Name of Contractor:

**Principal Investigators:** 

University of Washington

S. D. Malone, R.S. Crosson, and A.I. Qamar Dept. of Earth and Space Sciences Box 351310 University of Washington Seattle, WA 98195-1310

Dr. John Unger **MS 905 U.S. Geological Survey** 12201 Sunrise Valley Drive Reston, VA 20192

Short Title:

Program objective number:

**Government Technical Officer:** 

Effective Date of J.O.A.:

Amount of J.O.A., 12/1/00-11/30/01:

**Time Period Covered in Report:** 

**Date Report Submitted:** 

Dec. 1, 2000

**Cooperative Operation of the** 

**Pacific Northwest Seismograph Network** 

\$690,072. (\$529,164 plus supplement of \$160,908)

1/1/01 - 12/31/01

March 10, 2002

Research supported by the U.S. Geological Survey, Department of the Interior under USGS award number 01HQAG0011

I-1

The views and conclusions contained in this document are those of the authors, and should not be interpreted as necessarily representing the official policies, either express or implied, of the U.S. Government.

### ABSTRACT and NONTECHNICAL SUMMARY

This is the annual technical report for USGS Joint Operating Agreement 01HQAG0011 "Pacific Northwest Seismograph Network (PNSN) Operations". This agreement covered network operations in western Washington and Oregon, routine data processing, and preparation of bulletins and reports. The objective of our work under this operating agreement was to gather seismic data, and to analyze and interpret them for use in evaluation of seismic and volcanic hazards in Washington and Oregon. This report includes an update on recent changes in our data acquisition and processing system, a review of station operations during 2001, an overview of our public information program, and a summary of 2001 seismicity.

During 2001 there were 23 earthquakes reported felt west of the Cascades in Washington, ranging in magnitude from 1.7 to 6.8. Only one Oregon earthquake was reported felt this year; magnitude 1.9.

By far the most interesting event during the reporting period was the moment-magnitude 6.8 Nisqually earthquake of Feb. 28, 2001. It occurred at a depth of about 52 km, about 18 km northeast of Olympia, WA. Extensive information is available on the Nisqually Earthquake Clearinghouse:

### http://maximus.ce.washington.edu/~nisqually/index.html

A great deal has been and will be written about the Nisqually earthquake, which caused significant damages. Only four small aftershocks were recorded in the two weeks following the mainshock, but a possible late aftershock of magnitude 4.3 occurred nearby about six months later.

East of the Cascades in Washington, more than 70 earthquakes were felt during 2001. Many of these were tiny events in the Spokane urban area, where a vigorous sequence of earthquakes began in May. Activity continued in bursts, with the largest earthquake M 4.0 on November 11. No comparable sequence is known in the history of Spokane. For additional details see the quarterly reports, or the PNSN web page "The 2001 Spokane Earthquake Sequence":

http://www.ess.washington.edu/SEIS/EQ Special/WEBDIR 01062514151n/overview.html

# **CONTENTS**

| SUMMARY                                          | 1   |
|--------------------------------------------------|-----|
| CURRENT INITIATIVES                              |     |
| Introduction                                     | 1   |
| CREST Stations                                   | 1   |
| PNSN Strong Motion Program                       | 1   |
| PNSN RACE System                                 | 1   |
| EARTHWORM Progress Report                        | 2   |
| OPERATIONS                                       | 2   |
| Seismometer Locations and Maintenance            | 2   |
| Data Processing                                  | 8   |
| Publications                                     | 8   |
| SEISMICITY, EMERGENCY NOTIFICATION, AND OUTREACH | 8   |
| Seismicity                                       | 8   |
| Emergency Notification                           | .12 |
| Public Information and Outreach                  | .12 |
| Acknowledgments                                  |     |

# **TABLES**

| 1A. Station Table - Short period Stations                  | 4   |
|------------------------------------------------------------|-----|
| 1B. Station Table - Broad-band three-component stations    | 6   |
| 1C. Station Table - Strong-motion three-component stations | 7   |
| 2. Felt Earthquakes, 2001                                  | .10 |
| 3. Annual counts of events recorded by the PNSN, 1980-2001 | .12 |

# FIGURES

| 1. Map view of seismometer stations in western Washington; 12/01 |
|------------------------------------------------------------------|
| 2. Earthquakes magnitude 2.0 or larger 1/1/01-12/31/01           |

## APPENDICES

| 1. | Quarterly | <sup>1</sup> Reports, | Jan. | 1, 2001 | - Dec. | 31, | 2001 |
|----|-----------|-----------------------|------|---------|--------|-----|------|
|----|-----------|-----------------------|------|---------|--------|-----|------|

- 2. List of publications wholly or partially funded under this agreement
- 3. Reprint of "Preliminary Report on the Mw=6.8 Nisqually, Washington Earthquake of 28, February 2001, SRL V. 72, N. 3, pp. 352-361.

### ANNUAL TECHNICAL REPORT USGS Joint Operating Agreement 01HQAG0011 "PACIFIC NORTHWEST SEISMOGRAPH NETWORK (PNSN) OPERATIONS"

### SUMMARY

This is the 2001 annual technical report for USGS Joint Operating Agreement 01HQAG0011 "Pacific Northwest Seismograph Network (PNSN) Operations". This agreement covered network operations in western Washington and northern Oregon, routine data processing, and preparation of bulletins and reports. PNSN stations in southern and central Oregon are maintained by the University of Oregon under Cooperative Agreement 01HQAG0012 and this report also covers the work undertaken under that agreement. The objective of our work under this operating agreement was to gather seismic data, and to analyze and interpret them for use in evaluation of seismic and volcanic hazards in Washington and Oregon. This report includes an update on recent changes in our data acquisition and processing system, a review of station operations during 2001, an overview of our public information program, and a summary of 2001 seismicity.

Since 1984, we have issued quarterly bulletins for all of Washington and Oregon. These include catalogs of earthquakes and blasts located in Washington and Oregon, providing up-to-date coverage of seismic and volcanic activity. Appendix 1 contains quarterly bulletins covering 2001.

### **CURRENT INITIATIVES**

### Introduction

The PNSN is continuing the long process of upgrading operations. Upgrades include enhancement of the emergency information distribution system, installation of seismic sensors that can accurately capture the full range of earthquake amplitudes and frequencies, implementation of a data recording system that fully supports multi-component data, and near-real-time data exchange with neighboring networks.

### **CREST Stations**

The USGS/NOAA CREST (Consolidated Reporting of EarthquakeS and Tsunamis) project is designed to improve NOAA's ability to assess the likelihood of a tsunami and issue timely warnings in the event of a west coast subduction earthquake. CREST calls for upgrades to regional networks to enable them to provide very rapid and reliable information to the Alaska and Pacific Tsunami Warning Centers. Installation of CREST stations began in 1998. In 2001, CREST Oregon stations were installed in Eugene, Tahkenitch, and Toledo. In Washington, stations were installed in Port Angeles, and near Forks, Washington. Two additional sites; at Megler, Washington and Mt. Hebo, Oregon; were installed during 2001 but telemetry was not yet functioning.

### **PNSN Strong Motion Program**

Since 1996, the PNSN has installed digital strong-motion instruments. Most of these are in the Puget Sound Area, but stations are also being sited in other urban areas. In 2001, 23 new permanent (and 2 temporary) instruments were installed, bringing the total number of PNSN real-time strong-motion instruments to 70. Continuous data from these stations are sent to the PNSN via Internet or lease-line modem. Most of the strong-motion instruments (except CREST stations) also have internal memory and are configured to record internally if ground motions exceed a specified threshold. If continuous data transmission fails, the internally recorded data are still available via dial-up retrieval or site visit. Three additional dial-up stations in the Portland area are operated by the USGS.

#### PNSN RACE (Rapid Alerts for Cascadia Earthquakes) System

**RACE** is an earthquake notification system for emergency managers and others who need very rapid pager-based notification of earthquake activity. The RACE system is based on the CUBE system developed at Caltech for the Southern California Seismic Network. The RACE system is operating in approximately 10 emergency management and state agencies in Washington and Oregon.

#### **EARTHWORM Progress Report**

In 2001, *scossa* became our primary EARTHWORM computer, and *milli* was demoted to primary backup computer, while *verme* remained the secondary backup computer.

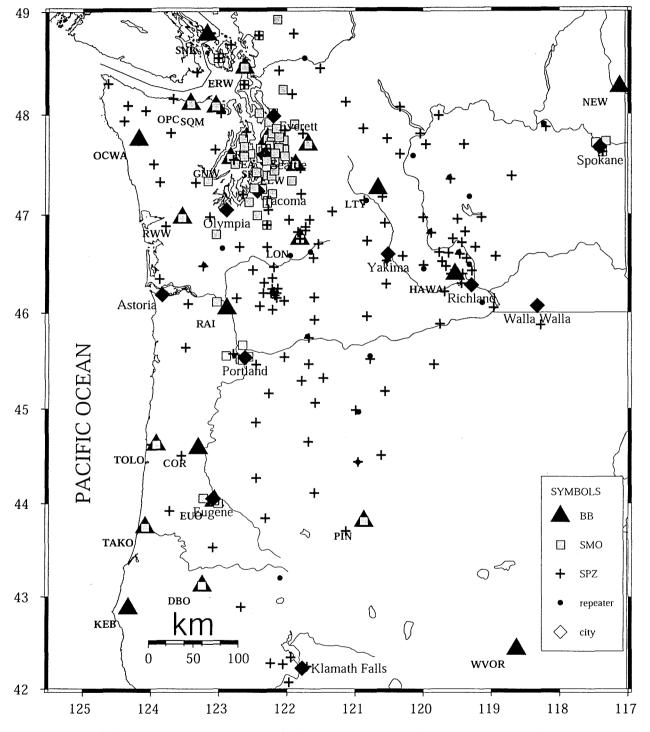
When one of our SUNWORM digitizers began to have problems in early 2001, we obtained an official EARTHWORM digitizer from the central EARTHWORM team. By the end of 2001, the complex wiring for *pigia*, the new Intel-based EARTHWORM digitizer running under Windows NT, was completed and *pigia* began digitizing data. *Pigia* will operate as an EARTHWORM node, exporting digitized data to *verme*. We are currently configuring the files that associate channel numbers with station and component names. Full integration of *pigia* into our data acquisition process is expected in the first quarter of 2002.

In mid-February a new earthquake magnitude calculator, *localmag*, was implemented as part of our routine earthworm system. It had been tested by its developer, Pete Lombard, using previously recorded PNSN data but calibration had not been completed. Thus, PNSN staff had only very brief training and minimal experience with *localmag* when the Nisqually earthquake occurred on Feb. 28. The initial magnitude estimates from *localmag* were available less than 15 minutes after the earthquake, and were very close to the final magnitude of 6.8. We continue to gather information on how *localmag* performs over a wider magnitude range.

During January and early February, Steve Malone gave a 6-week class on the PNSN EARTHWORM implementation. This class brought PNSN staff up-to-date on most of the critical features of our data acquisition system, and improved our ability to deal with operational problems, which worked out well in the Nisqually earthquake.

#### **OPERATIONS**

#### Seismometer Locations and Network Maintenance


Figure 1 shows seismograph stations operated by the PNSN at the end of 2001, when the PNSN EARTHWORM SYSTEM was digitally recording 439 channels of real-time or near-real-time seismic data. Stations available include a total of 149 short-period stations, 30 broad-band, and 73 strong-motion stations.

This contract (JOA 01HQAG0011) supports 99 short-period sites (some with multiple components) and operation of 70 strong motion and 18 broad-band stations. The supported stations cover much of western Washington and Oregon, including the volcanos of the central Cascades.

Additional stations funded by other contracts, or telemetered in real or near-real time from adjacent networks, are also used in event locations. Station Tables 1A-1C list the locations of various types of stations. Quarterly reports provide additional details of station operation. Quarterly reports from January 1, 2001 through December, 2001 are included as Appendix 1.

Aside from station outages, normal maintenance includes a visit to each site at least once every two years to replace batteries and do preventive maintenance. In addition seismometers must be replaced every 4-6 years. More than 30 radio telemetry relay sites are also maintained independently of the seismograph stations.

Table 1A lists short-period, mostly vertical-component stations used in locating seismic events in Washington and Oregon. The first column in the table gives the 3-letter station designator, followed by a symbol designating the funding agency; stations marked by a percent sign (%) were supported by USGS joint operating agreement 01-HQ-AG-0011. A plus (+) indicates support under Pacific Northwest National Laboratory, Battelle contract 259116-A-B3. Stations designated "#" are USGS-maintained stations recorded at the PNSN. Stations designated by letters are operated by other networks, and telemetered to the PNSN. "M" stations are received from the Montana Bureau of Mines and Geology, "C" stations from the Canadian Pacific Geoscience Center, "U" stations from the US Geological Survey (usually USNSN stations), "N" stations from the USGS Northern California Network, and "H" stations from the Hanford Reservation via the Pacific Northwest National Labs. Other designation indicate support from other sources. Additional columns give station north latitude and west longitude (in degrees, minutes and seconds), station elevation in km, and comments indicating landmarks for which stations were named.



- 3 -

Figure 1A. Stations operating at the end of 4th quarter, 2001. Stations shown are short period vertical (SPZ), 3-component broadband (BB), or strong motion (SMO). City locations are shown by black diamond symbols.

| TABLE 1     | A - Short- | period Stations          | operated by t              | he PNSN d               | luring the fourth quarter 200            |
|-------------|------------|--------------------------|----------------------------|-------------------------|------------------------------------------|
| STA         | F          | LAT                      | LONG                       | EL                      | NAME                                     |
| ASR         | %          | 46 09 09.9               | 121 36 01.6                | 1.357                   | Mt. Adams - Stagman Ridge                |
| AUG         | %<br>%     | 45 44 10.0<br>42 53 12.6 | 121 40 50.0<br>122 40 46.6 | 0.865<br>1.671          | Augspurger Mtn<br>Butler Butte, Oregon   |
| BBO<br>BEN  | 1          | 46 31 12.0               | 119 43 18.0                | 0.335                   | W PNNL station                           |
| BHW         | %          | 47 50 12.6               | 122 01 55.8                | 0.198                   | Bald Hill                                |
| BLN         | %          | 48 00 26.5<br>46 28 30.0 | 122 58 18.6<br>123 13 41.0 | 0.585<br>0.870          | Blyn Mt.<br>Boistfort Mt.                |
| BOW<br>BPO  | %          | 44 39 06.9               | 121 41 19.2                | 1.957                   | Bald Peter, Oregon                       |
| BRO         | %          | 44 16 02.5               | 122 27 07.1                | 0.135                   | Big Rock Lookout, Oregon                 |
| BRV<br>BSMT | ,<br>M     | 46 29 07.2<br>47 51 04.8 | 119 59 28.2<br>114 47 13.2 | $0.920 \\ 1.950$        | Black Rock Valley<br>Bassoo Peak, MT     |
| BUO         | 1V1<br>%   | 42 16 42.5               | 122 14 43.1                | 1.797                   | Burton Butte, Oregon                     |
| BVW         | +          | 46 48 39.5               | 119 52 56.4                | 0.670                   | Beverly<br>Chala Dates South             |
| CBS         | +<br>%     | 47 48 17.4<br>46 07 01.4 | 120 02 30.0<br>122 02 42.1 | 1.067<br>0.756          | Chelan Butte, South<br>Cedar Flats       |
| CDF<br>CHMT | 70<br>M    | 46 54 51.0               | 113 15 07.0                | 0.750                   | Chamberlain Mtn, MT                      |
| СММ         | %          | 46 26 07.0               | 122 30 21.0                | 0.620                   | Crazy Man Mt.                            |
| CMW         | %          | 48 25 25.3               | 122 07 08.4                | 1.190                   | Cultus Mtns.                             |
| CPW<br>CRF  | %          | 46 58 25.8<br>46 49 30.0 | 123 08 10.8<br>119 23 13.2 | 0.792<br>0.189          | Capitol Peak<br>Corfu                    |
| DPW         | +          | 47 52 14.3               | 118 12 10.2                | 0.892                   | Davenport                                |
| DY2         | +          | 47 59 06.6               | 119 46 16.8                | 0.890                   | Dyer Hill 2<br>East Dama Mt. St. Halana  |
| EDM<br>ELK  | %<br>%     | 46 11 50.4<br>46 18 20.0 | 122 09 00.0<br>122 20 27.0 | 1.609<br>1.270          | East Dome, Mt. St. Helens<br>Elk Rock    |
| ELL         | +          | 46 54 34.8               | 120 33 58.8                | 0.789                   | Ellensburg                               |
| EPH         | +          | 47 21 22.8               | 119 35 45.6                | 0.661                   | Ephrata                                  |
| ET3         | +          | 46 34 38.4<br>47 36 15.6 | 118 56 15.0<br>120 19 56.4 | 0.286<br>1.477          | Eltopia (replaces ET2)<br>Entiat         |
| ETW<br>FHE  | +<br>+     | 46 57 06.9               | 119 29 49.0                | 0.455                   | Frenchman Hills East                     |
| FL2         | %          | 46 11 47.0               | 119 29 49.0<br>122 21 01.0 | 1.378                   | Flat Top 2                               |
| MW          | %          | 46 56 29.6<br>46 36 31.8 | 121 40 11.3                | 1.859                   | Mt. Fremont                              |
| GBB<br>GBL  | H<br>+     | 46 35 54.0               | 119 37 40.2<br>119 27 35.4 | 0.185<br>0.330          | PNNL Station<br>Gable Mountain           |
| <b>SHW</b>  | %          | 47 02 30.0               | 122 16 21.0                | 0.268                   | Garrison Hill                            |
| GL2         | +          | 45 57 35.0               | 120 49 22.5                | 1.000                   | New Goldendale                           |
| GLK<br>GMO  | %<br>%     | 46 33 27.6<br>44 26 20.8 | 121 36 34.3<br>120 57 22.3 | 1.305<br>1.689          | Glacier Lake<br>Grizzly Mountain, Oregon |
| SMW         | %          | 47 32 52.5               | 122 47 10.8                | 0.506                   | Gold Mt.                                 |
| GPW         | %          | 48 07 05.0               | 121 08 12.0                | 2.354                   | Glacier Peak                             |
| GSM         | %<br>%     | 47 12 11.4<br>45 55 27.0 | 121 47 40.2<br>121 35 44.0 | 1.305<br>1.189          | Grass Mt.<br>Guler Mt.                   |
| GUL<br>H2O  | H<br>H     | 46 23 45.0               | 119 25 22.0                | 1.109                   | Water PNNL Station                       |
| İÂM         | %          | 42 04 08.3               | 121 58 16.0                | 1.999                   | Hamaker Mt., Oregon                      |
| HBO         | %          | 43 50 39.5               | 122 19 11.9                | 1.615                   | Huckleberry Mt., Oregon                  |
| HDW<br>HOG  | %<br>%     | 47 38 54.6<br>42 14 32.7 | 123 03 15.2<br>121 42 20.5 | 1.006<br>1.887          | Hoodsport<br>Hogback Mtn., Oregon        |
| HSO         | %          | 43 31 33.0               | 123 05 24.0                | 1.020                   | Harness Mountain, Oregon                 |
| HSR         | %          | 46 10 28.0               | 122 10 46.0                | 1.720                   | South Ridge, Mt. St. Helens              |
| HTW<br>HUO  | %<br>%     | 47 48 14.2<br>44 07 10.9 | 121 46 03.5<br>121 50 53.5 | 0.833<br>2.037          | Haystack Lookout<br>Husband OR (UO)      |
| BO          | +          | 45 27 41.7               | 119 50 13.3                | 0.645                   | Jordan Butte, Oregon                     |
| CW          | %          | 48 11 42.7               | 121 55 31.1                | 0.792                   | Jim Creek                                |
| IUN<br>KMO  | %<br>%     | 46 08 50.0<br>45 38 07.8 | 122 09 04.4<br>123 29 22.2 | 1.049<br>0.975          | June Lake<br>Kings Mt., Oregon           |
| <b>XOS</b>  | ŵ          | 46 27 46.7               | 122 11 41.3                | 0.610                   | Kosmos                                   |
| <b>KTR</b>  | N          | 41 54 31.2               | 123 22 35.4                | 1.378                   | CAL-NET                                  |
| LAB<br>LAM  | %<br>N     | 42 16 03.3<br>41 36 35.2 | 122 03 48.7<br>122 37 32.1 | 1.774<br>1.769          | Little Aspen Butte, Oregon<br>CAL-NET    |
| LCCM        | M          | 45 50 16.8               | 111 52 40.8                | 1.669                   | Lewis and Clark Caverns, MT              |
| LCW         | %          | 46 40 14.4               | 122 42 02.8                | 0.396                   | Lucas Creek                              |
| LMW         | %          | 46 40 04.8               | 122 17 28.8<br>118 17 06.6 | 1.195                   | Ladd Mt.<br>Lincton Mt., Oregon          |
| LNO<br>LO2  | +<br>%     | 45 52 18.6<br>46 45 00.0 | 121 48 36.0                | 0.771<br>0.853          | Longmire                                 |
| JOC         | +          | 46 43 01.2               | 119 25 51.0                | 0.210                   | Locke Island                             |
| LVP         | %          | 46 03 59.4<br>48 47 02.4 | 122 24 10.2<br>121 53 58.8 | 1.134                   | Lakeview Peak                            |
| MBW<br>MCMT | %<br>M     | 48 47 02.4<br>44 49 39.6 | 112 50 55.8                | 1.134<br>1.676<br>2.323 | Mt. Baker<br>McKenzie Canyon, MT         |
| MCW         | %          | 48 40 46.8               | 122 49 56.4                | 0.693                   | Mt. Constitution                         |
| MDW         | +          | 46 36 47.4               | 119 45 39.6                | 0.330                   | Midway                                   |
| MEW         | %          | 47 12 07.0<br>46 33 27.0 | 122 38 45.0<br>119 21 32.4 | 0.097<br>0.146          | McNeil Island<br>May Junction 2          |
| MJ2<br>MOX  | +<br>+     | 46 33 27.0               | 120 17 53.4                | 0.146                   | May Junction 2<br>Moxie City             |
| MPO         | %          | 44 30 17.4               | 123 33 00.6                | 1.249                   | Mary's Peak, Oregon                      |
| MTM         | %          | 46 01 31 8               | 122 12 42.0                | 1.121                   | Mt. Mitchell                             |
| NAC         | +<br>%     | 46 43 59.4<br>43 42 14.4 | 120 49 25.2<br>121 08 18.0 | 0.728<br>1.908          | Naches<br>Newberry Crater, Oregon        |
| NCO         |            |                          | 141 00 10.0                | 1.200                   | THE WOULD Y CLAICE, UILEUIL              |
| NCO<br>NEL  | +          | 48 04 12.6               | 120 20 24.6                | 1.500                   | Nelson Butte                             |

# - 5 - 2001 Annual Tech. Rept. USGS - 01HQAG0011

| OBC         %         44 02 071         124 04 39.0         Olympics - Bonidu Creek           OHH         %         47 19 34.5         123 15 15.0         0.833         Olympics - Checka Peak           OCP         %         48 17 53.5         124 37 30.0         0.847         Olympics - Checka Peak           ODD         %         47 19 34.5         124 23 48.6         0.034         Olympics - Checka Peak           ODD         %         44 19 20.0         122 43 15.6         0.034         Olympics - Show Dome           ONV         %         47 44 00.6         123 42 13.7         2.000.0         Olympics - Show Dome           OSD         %         47 44 00.8         124 19.7         2.000.0         Olympics - Show Dome         Olympics - Show Dome           OSD         %         47 44 00.84         123 15.7         2.000.0         Olympics - Show Dome         Olympics - Show Dome           OTR         %         44 60 00.0         124 20 390         0.712         PC Moutain Detachment ANSS-SM           OTR         %         44 60 00.0         124 00.5         0.237         Procematic         Olympics - Show Dome           OTM         %         45 25 12.6         121 45 52.0         2.871         Olympics - Show Dome                  | STA        | F            | LAT        | LONG        | EL    | NAME                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------|-------------|-------|--------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OBC        |              |            |             |       |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              |            | 123 51 57.0 |       | Olympics - Burnt Hill          |
| ÖFR         %         47 55 00.0         124 23 41.0         0.152         Olympics - Forset Resource Cen           OHW         %         46 12 20.8         124 31 54.6         0.054         Oak Harbor           OND         %         46 12 20.8         124 13 15.4         Obympics - Now Dome           OSD         %         47 34 03.6         123 41 07         2.006         Obympics - Now Dome           OSR         %         47 36 20.3         123 37 42.0         0.815         Obympics - Snow Dome           OSR         %         47 36 20.3         123 15 8.8         0.322         New Othello (replaces OT2 8/26           OTR         %         48 05 00.0         124 13 55.8         0.323         PC Montain Detachment ANSS-SM           PCMD         %         46 52 25.5         121 43 54.4         3.085         M. Rainier, Camp Muir           RCS         %         46 52 15.6         121 43 52.0         2.477         M. Rainier, Camp Schurman           RED         H         46 7 35.0         124 43 52.5         1024         Raitlesmake M. (West)ge           RNW         %         47 35 53         121 43 52.0         2.477         M. Rainier, Camp Muir           RED         H         46 50 68.123 02 23.4                                   |            |              |            |             |       |                                |
| ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OSD         %         47 46 35.2         123 42 13.7         2008         Octputs West         Ontputs - Snow Parke           OTT         %         46 40 064         119 13 58.8         0.325         Olympics - Type Ridge           PAT         +         48 00 00         124 20 39.0         0.712         Olympics - Type Ridge           PAT         +         48 52 55.2         119 45 06 44         0.0239         PC Montain Detachment ANSS-SM           PGM         %         46 53 048.9         121 45 54.4         3.083         Proser           PGO         %         46 51 068.9         121 45 54.4         3.083         Proser         Presen           RCS         %         46 50 08.9         121 45 54.4         3.085         Proser         Proser         Presen         Proser         Nr. Rainer, Camp Muir           RED         H         46 47 95.6         121 43 52.0         2.877         Mt. Rainer, Camp Muir           RED         H         46 47 95.6         123 04 25.0         0.850         Romenta Noser, Oregan           REW         %         46 49 02.2         123 04 20.0         0.850                                        |            | %            | 47 56 00.0 | 124 23 41.0 | 0.152 | Olympics - Forest Resource Cen |
| OOW         6         47 44 03.6         124 11 10.2         0.561         Octopis West           OSD         6         47 48 59.2         123 42 137         2.080         Olympics - Snow Done           OSR         6         47 30 203         123 57 42.0         0.815         Olympics - Treep Ridge           OTR         +         44 63 0500         124 20 30.0         0.712         Olympics - Treep Ridge           PCMD         6         46 05 00.0         122 27 11.5         0.239         PC Mountain Detachment ANSS-SM           PGO         6         45 27 42.6         122 77 11.5         0.253         Gresham. Oregoa           PGW         +         46 12 45.6         119 41 08.4         0.358         Frozser         Camp Muir           RED         H         46 17 51.0         119 26 13.6         0.330         Red Mountain PNL Station           REV         +         46 23 24.6         123 32 25.0         0.830         Roman Nose, Oregoa           RNW         6         42 32 48.0         123 02 45.0         0.830         Roman Nose, Oregoa           RNW         6         42 34 40.2         119 32 03 2.8         1.045         Ratiesnake Mt. (Sati)           RVV         6         42 34 40.2                                            |            |              |            |             |       |                                |
| OSD         %         47         48         592         123         42         137         2.008         Olympics - Salmon Ruige           OTR         +         46         40         84         50         19         15         Signification         19         15         Signification         19         15         Signification         19         15         Signification         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                       |            | %<br>%       | 40 52 50.8 |             |       |                                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |             | 2.008 | Olympics - Snow Dome           |
| OTR         %         48 05 00.0         124 20 39.0         0.712         Olympics - Type Ridge           PAT         +         45 22 52.2         119 45 064.4         0.239         PC Mountain Detachment ANSS-SM           PGO         %         46 52 74 26         122 71 15.7         0.239         Presser           PRV         +         46 50 08.9         121 43 52.4         0.533         Prosser           RCM         %         46 50 08.9         121 43 52.4         2.877         Mt. Rainier. Camp Muir           RED         H         46 17 51.0         119 26 15.6         0.308         Mt. Rainier. Camp Schurman           RED         H         46 47 90.2         121 43 23.5         0.830         Roman Nec. Oregon           RNW         %         42 73 56.0         121 48 19.2         1.047         Rokester HS ANSS-SMO           RSW         +         46 23 40.2         119 35 28.8         1.045         Rauitesnake Mt. (West)           RVV         %         47 01 38.6         121 20 11.9         1.885         Raven Roost (Ormer NEHRP temp           RVN         %         47 01 38.6         121 20 11.9         1.885         Raven Roost (Ormer NEHRP temp           RVN         %         47 01 38.6                                        | OSR        |              |            | 123 57 42.0 |       | Olympics Salmon Ridge          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              |            |             |       | Olympics - Type Ridge          |
| PGO         %         45         27         42.5         12.2         PT         Gresham         Oregon           PGW         %         46         12         45.5         17.7         0.122         Port Gamble           PRO         +         46         50         8.2         12.4         52.2         0.28         Prosser           RCM         %         46         50         12.1         45.2.0         2.8         Mt. Rainier. Camp Muir           RCM         %         46         10.90         12.1         45.2.0         2.8         Mt. Rainier. LamphU. Statian           RER         #         46         10.90         12.1         48         19.2         1.7.756         Mt. Rainier. LamphU. Statian           RNW         %         46.2         54.6         12.3         2.2.4         Not         Not         Nochester         HS.S.SMO           RVW         %         46.2         24.0.2         11.9.3         2.8.8         1.0.045         Rautestake Mt. (East)         Rutestake Mt. (East)         Statistake Mt. (East)         Rutestake Mt. (East)         Rutestake Mt. (East)         Ru                                       |            |              | 45 52 55.2 |             | 0.262 | Paterson                       |
| PGW       %       47 49 18.8       122 35 57.7       0.122       Port Gamble "         PRO       +       46 12 456.       119 40 84.4       0.053       Prossert       Camp Schurman         RCS       %       46 52 15.6       121 43 54.4       3.085       Mt. Rainier, Camp Muir         RED       H       46 17 51.0       119 26 15.6       0.330       Red Mountain PNNL Station         RED       H       46 17 51.0       119 26 15.6       0.330       Red Mountain PNNL Station         REW       %       46 49 003.0       121 43 25.3       0.850       Rockport         RWO       %       43 26 54.0       121 30 49.0       0.0850       Rockport         RWW       %       46 25 40.2       119 35 22.8       1.045       Rattlesnake Mt. (East)         RVV       %       46 63 34.5       121 28 17.3       1.000       Mt. Rainier - Voight Creek         RVW       %       46 08 53.2       122 44 52.1       0.460       Rockport       Rocksort NEB         RVW       %       46 08 53.2       122 44 52.1       0.460       Rocksort NEB       Rocksort NEB         SAU       *       77 47 20 63 44.2       112 21 57.7       .       Sottosscost Anderes       SMO                                                                                                       | PCMD       |              | 46 53 20.9 |             |       |                                |
| PRO         +         46         12         45.6         119         41         08.4         0.553         Prosser         Camp Muir           RCS         %         46         50         121         43         52.0         2.877         Mt. Rainier, Camp Muir           RED         H         46         17         51.0         119         20         12.3         0.500         Red Mountain PNNL Station           REW         %         46         0.92         121         30         27.3         1.756         Mt. Rainier, Camp Schurman           REW         %         46         47         58.0         121         30         49.0         0.850         Rockport         Revest Notes, Oregon           REW         %         46         47         58         17.3         1.040         Rockport         Revest Notes (former NEHRP temp           RVW         %         46         63         42.2         12.1         119         1.885         Ravest Roost (former NEHRP temp           RVW         %         47         0.1         12.2         14         0.2.1         1.8         1.9         1.8         1.9         1.8         1.9         1.8         1.1 <t< td=""><td></td><td>%<br/>%</td><td>45 27 42.6</td><td></td><td></td><td>Port Gamble</td></t<>  |            | %<br>%       | 45 27 42.6 |             |       | Port Gamble                    |
| RCM       %       46 50 08.9       121 43 52.4       3.085       Mt. Rainer, Camp Muir         RED       H       46 17 51.0       119 26 15.6       0.330       Red Muir       Renma Schurman         RER       %       46 49 09.2       121 43 52.0       2.877       Mt. Rainer, Camp Muir         RINO       %       47 27 35.0       121 48 19.2       1.024       Rattlemack Mt. (West)         RNO       %       42 36 34.0       123 43 25.5       0.850       Roman Nose, Oregon         RPWS       %       42 35 34.0       123 43 25.3       0.800       Roman Nose, Oregon         RWV       %       46 63 34.5       121 30 29.0       0.807       Rattlemake Mt. (Bat)         RWW       %       46 63 53.2       122 44 32.1       0.460       Raven Roost (Tommer NEHR temp         RVW       %       46 08 53.2       122 24 54.2       0.119       Silve Beach ES SMO         SEA       %       43 46 05.9       122 12 24 54.2       0.119       Silve SMA Schans Schools, Ferris High S         SHW       %       46 11 37.1       122 11 28.1       2.116       September lobe, Mt. St. Helens         SHW       %       46 14 37.0       112 39 35.4       0.877       Soutas Schools, Ferris High S <td></td> <td>+</td> <td></td> <td>119 41 08.4</td> <td></td> <td></td> |            | +            |            | 119 41 08.4 |       |                                |
| RED         H         46 (17)         110         26 (15.6)         0.30         Red Multin FNNL Station           RER         %         44 (27)         35.0         121 (48 (19.2)         1.024         Rattienake Mit. (West)           RNO         %         43 (34 (38.9)         123 (48 (19.2)         1.024         Rattienake Mit. (West)           RPW         %         44 (25 (36.0)         121 (30 (29.0)         0.850         Rockard           RRW         %         44 (25 (36.0)         121 (30 (29.0)         0.850         Rockard           RWV         %         44 (25 (36.0)         121 (30 (29.0)         0.850         Rattenake Mit. (Cast)           RVN         %         46 (26 (35.2)         122 (24 (32.1)         0.460         Rose Valley           SAW         +         47 (20.0)         112 (21 (28.1)         0.110         Silver Seach (25 SMO           SEA         %         43 (20.0)         122 (24 (32.1)         0.460         Rose Valley           SEF         #         46 (12 (0.7)         122 (11 (28.1)         2.110         Silver Seach (25 SMO           SEF         #         46 (20 (0.7)         122 (12 (28.1)         2.110         Silver Seach (28.5)         SMO           SILF                                          | RCM        | %            | 46 50 08.9 |             | 3.085 |                                |
| RER         %         46 49 09.2         121 50 27.3         1.756         Mt. Raitier, Emerald Ridge           RMW         %         47 27 350         121 48 19.2         1024         Rattlesnake Mt. (West)           RNO         %         43 25 50.1         1024 43 125         0.850         Roman Nose, Oregon           RPW         %         44 26 340.2         119 35 28.8         0.047         Rocheport           RSW         +         46 23 40.2         119 35 28.8         0.043         Raittesnake Mt. (East)           RVN         %         46 08 35.2         121 44 32.1         0.400         Rose valuey         Rown Roost (former NEHPP temp           RVW         %         46 08 35.2         122 18 20.3         0.100         Summer Poistone ES SMO           SEP         %         47 39 05.8         122 18 20.3         0.100         Sumer ES SMO           SEP         %         47 37 10.4         117 12 15 57         -         Solan Schools, Ferris High S           SHW         %         46 11 20 07         122 14 06.5         1425         Mt. St. Helens           SSEP         %         47 45 32.0         120 31 40.0         1.750         South Mm.           SIW         %         46 14 35                                              |            | %<br>н       | 46 52 15.6 | 121 43 52.0 |       | Red Mountain PNNL Station      |
| RNW         %         47         27         35.0         121         48         19.2         1.024         Rattesnake Mt. (West)         -           RNO         %         43         26         34         25         0.850         Roman Nose, Oregon           RRHS         %         46         47         786.6         121         20         25.4         0.047         Rochester HS ANSS-SMO           RSW         +         46         23         40.2         119         52.8.8         1.045         Rattesnake Mt. (East)           RVV         %         47         01         38.6         121         0.119         1.885         Raven Roost (former NEHRP temp           RVW         %         46         05         122         24         32.1         0.400         Rose Valley         Standrevs           SBES         %         47         39         15.8         122         18         2.3         0.030         UW Scattle (Wood Anderson BB           SEP         #         46         13         57.0         123         10         5.7         50         Mt.5         Helens           SIHV         %         46         14         57.0         12                                                                                                              |            | %            | 46 49 09.2 |             |       | Mt. Rainier, Emerald Ridge     |
| RPW $\%$ 48 26 54.0121 30 49.00.850RockportRochester HS ANSS-SMORSW+46 62 340.2119 35 28.81.045Rathespake Mt. (East)RVC $\%$ 46 56 34.5121 20 11.91.885Raven Roost (former NEHRP tempRVW $\%$ 47 01 38.6121 20 11.91.885Raven Roost (former NEHRP tempRVW $\%$ 46 06 35.2122 44 32.10.460Rose ValleySAW+47 42 06.0119 24 01.80.700St. hardrewsSBES $\%$ 48 40 65.9122 43 42.20.110Silver Beach (ES SMOSLA $\%$ 47 39 15.8122 18 29.30.030UW scattle (Wood Anderson BBSFER $\%$ 47 17 30 15.8122 14 06.5SHW $\%$ 47 17 30.1121 23 01.425Mt. HelensSHW $\%$ 47 19 10.7123 20 35.40.877Sougar LoafSNIH46 14 38.5122 08 12.01.270Sugar LoafSNIH46 14 46.0122 13 21.91.268Stuedbaker RidgeSTD $\%$ 46 14 16.0122 13 21.91.268Stuedbaker RidgeSTD $\%$ 46 14 16.0122 13 52.11.010Stage Valley CA ANSS-SMOTBM+47 10 32.412.11.2351.006Table Mt.CO $\%$ 44 06 27.6121 36 02.11.975ThreeCO $\%$ 44 06 27.6121 36 02.11.975Three Creck Meadows, Oregon.TDH </td <td>RMW</td> <td>%</td> <td>47 27 35.0</td> <td>121 48 19.2</td> <td></td> <td>Rattlesnake Mt. (West)</td>                                                                                                                                                                                                                                  | RMW        | %            | 47 27 35.0 | 121 48 19.2 |       | Rattlesnake Mt. (West)         |
| RRHS%46 47 58.6123 02 25.40.047Rochester HS ANSS-SMORSW+46 25 34.5121 58 17.31.000Mt Rainter - Voight CreekRVN%46 68 53.2122 20 11.91.885Raven Roost (former NEHRP tempRVW%46 08 53.2122 44 32.10.460Rose ValleySBES%48 46 05.9122 24 54.20.119Silver Beach ES SMOSEA%47 39 15.8122 18 22.30.030UW, Seattle (Wood Anderson BBSEP#46 12 00.7122 11 28.12.116September lobe, Mt. St. HelensSHEW%46 11 37.1122 14 06.51.425Mt. St. HelensSHW%47 19 10.7123 20 35.40.877South Mtn.SNIH46 27 80.0119 39 50.0-PNNL StationSNIH46 12 16.0122 17 37.81.242Sweet Springs. OregonSTD%46 14 16.0122 13 21.91.268Studebaker RidgeSTD%46 14 16.0123 40 11.10.308Stirped PeakSVOH%48 07 03.0120 43 52.21.341Tombe Actional RidgeTDH%46 07 30.0120 12 27 37 54.80.010Stati Actional RidgeTDH%46 17 03.0120 12 27 37 54.80.010Table Mt., OregonSVOH%48 17 21.8123 40 11.10.308Striped PeakSVOH%48 17 21.2123 40 11.10.308Striped PeakSVOH<                                                                                                                                                                                                                                                                                                                                                                        |            | %<br>%       | 43 54 58.9 |             |       |                                |
| RSW+46 23 40.2119 35 28.81.045Rattesnake Mt. (East)RVC%46 05 34.5121 20 11.91.885Raven Roost (former NEHRP tempRVW%46 08 53.2122 44 32.10.460Rose ValleySAW+47 42 06.0119 24 01.80.701Si AndrewsSBES%48 40 65.9122 14 32.10.140Rose ValleySEP#46 105.9122 14 52.20.119VW, Seattle (Wood Anderson BBSEP#46 12 0.07122 11 25.7-Spokane Schools, Ferris High SSHW%46 11 37.1122 12 00.61.425Mt. St. HelensSLF%47 45 32.0120 31 40.01.750Sougar LoafSMW%46 11 37.1122 08 12.01.270Source of Smith CreekSSO%46 14 88.5122 08 12.01.270Source of Smith CreekSSO%46 14 16.0122 37 34.80.010Skagit Valley CC ANSS-SMOTBM+47 10 12.0120 35 52.81.006Skagit Valley CC ANSS-SMOTBM+47 10 12.0120 35 52.81.006Skagit Valley CC ANSS-SMOTDH%45 17 23.4121 47 25.21.541Tom.Dick.Harry Mt., OregonTDH%45 17 23.4121 47 25.21.541Tom.Dick.Harry Mt., OregonTDH%45 17 23.4121 47 25.21.541Tom.Dick.Harry Mt., OregonTDH%45 17 23.4121 35 12.61.544Beaver Bidle, Or                                                                                                                                                                                                                                                                                                                                                 |            | %            |            | 123 02 25.4 |       |                                |
| RVN%47 01 38.6121 20 11.91.885Raven Roost (former NEHRP tempRVW%46 06 53.2122 44 32.10.460Rose ValleySAW+47 42 06.0119 24 01.80.701St. AndrewsSBES%47 39 15.8122 45 42.0.119Silver Beach ES SMOSEP#46 12 0.7122 11 28.12.11St. Ferris High SSFER%47 13 10.4117 21 55.7-Sopkane Schools, Ferris High SSHW%46 11 37.1122 10 35.40.877South MmSNIH46 27 80.0123 20 35.40.877South MmSNIH46 27 80.0123 20 35.40.877South MmSNIH46 14 38.5122 08 12.01.270Source of Smith CreekSSO%46 14 16.0122 13 21.91.268Sweet Springs, OregonSTW%48 09.01.112.34 011.10.308Striped PeakSVOH%48 17 21.8122 37 54.80.010Skagit Valley CC ANSS-SMOTDH%46 17 32.012.0 03 52.81.006Table Mt.TDL%46 27.6121 36 02.11.975Torpenis RidgeTWW+47 10 81 7.4120 52 06.01.027TogenoTDL%45 03 37.2121 30 43.00.010UWFriddy Harbor ANSS-SMOVBE%45 03 37.2121 30 43.00.010UWFriddy Harbor ANSS-SMOVBE%45 03 37.2121 30 43.0                                                                                                                                                                                                                                                                                                                                                                                                       | RSW        | +            | 46 23 40.2 |             | 1.045 | Rattlesnake Mt. (East)         |
| RVW%46 08 35.2122 44 32.10.460Rose ValleySAW+47 42 06.0119 24 01.80.701St. AndrewsSBES%48 46 05.9122 18 29.30.030UW, Seattle (Wood Anderson BBSEA%47 39 15.8122 18 29.30.030UW, Seattle (Wood Anderson BBSEP#46 11 37.1122 11 28.12.116September lobe, Mt. St. HelensSHW%46 11 37.1122 14 06.51.425Mt. St. HelensSUF%47 45 32.0120 31 40.01.750Sugar LoafSNIH46 27 80.0119 39 50.0-PNNL stationSOS%46 14 38.5122 08 12.01.270Source of Smith CreekSSO%44 51 21.6122 27 37.81.242Sweet Springs. OregonSTD%46 14 16.0122 13 21.91.268Studebaker RidgeSTW%48 17 21.8122 37 54.80.010Skagit Valley CC ANSS-SMOTBM+47 10 12.0123 40 1.11.975Three Creek Meadows, OregonTDL%46 21 03.0122 12 57.01.400Tradedolar LakeTDL%46 33 37.2123 51.00.723Toppenish RidgeTWW+47 08 17.4120 52 06.01.077TandavayWW+47 08 33 37.2123 51.261.544Beaver Butte, OregonVOR%48 30 37.2123 51.00.723Toppenish RidgeWW+46 08 33 37.2 </td <td></td> <td>%<br/>%</td> <td>46 56 34.5</td> <td>121 58 17.3</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                          |            | %<br>%       | 46 56 34.5 | 121 58 17.3 |       |                                |
| SAW       +       47 42 06.0       119 24 01.8       0.701       St. Andrews         SBES       %       48 46 05.9       122 24 54.2       0.119       Silver Beach ES SMO         SEP       #       46 12 00.7       122 11 12       12.11       September lobe, ML St. Helens         SFER       %       47 37 10.4       117 21 55.7       -       Spokane Schools, Ferris High S         SHW       %       46 11 37.1       122 14 06.5       1.42.5       Mt. St. Helens         SILF       %       47 45 32.0       120 31 40.0       1.750       Sugar Loaf         SMW       %       46 14 38.5       122 08 12.0       1.270       Source of Smith Creek         SSO       %       44 51 21.6       122 37 37.8       1.242       Sweet Springs, Oregon         STW       %       48 09 03.1       123 40 11.1       0.308       Strupe feak       Stager Valley CC ANSS-SMO         STW       %       48 17 21.8       122 37 34.8       0.010       Skagir Valley CC ANSS-SMO         STW       %       48 07 33.0       122 14 7 52.2       1.541       Tombick-Harry Mt, Oregon         TDH       %       46 27 03.0       123 30 01.22       127 53.1       1.100.5       Treadolar Lake <td>RVW</td> <td>70<br/>%</td> <td>46 08 53.2</td> <td></td> <td></td> <td></td>           | RVW        | 70<br>%      | 46 08 53.2 |             |       |                                |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAW        | +            | 47 42 06.0 |             | 0.701 | St. Andrews                    |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | %            |            | 122 24 54.2 |       |                                |
| SHW%46 11 37.1122 14 06.51.425Mt. St. HelensSLF%47 45 32.0120 31 40.01.750Sugar LoafSMW%47 19 10.7123 20 35.40.877South Mm.SNIH46 27 80.0119 39 50.0-PNNL stationSOS%46 14 38.5122 08 12.01.270Source of Smith CreekSSO%46 14 16.0122 13 21.91.268Studebaker RidgeSTD%46 14 16.0122 13 21.91.268Studebaker RidgeSTW%48 09 03.1123 40 11.10.308Striped PeakSVOH%48 17 21.8122 37 54.80.010Skagit Valley CC ANSS-SMOTBM+47 10 12.0120 35 52.81.006Table Mt.TCO%44 06 27.6121 36 02.11.975Three Creek Meadows, Oregon.TDH%45 17 23.4121 47 25.21.541Tom.Dick.Harry Mt., OregonTRW+46 17 03.0122 12 57.01.400Tradedollar LakeTRW+46 18 33.7.2121 35 12.61.544Beaver Butte, OregonVOR%45 03 37.2121 35 12.61.544Beaver Butte, OregonVDBC49 01 34.0122 06 10.10.040CraadaVCR%45 09 20.0121 75 43.31.716Flag Point, OregonVG2%45 09 20.0121 75 70.0CanadaGoat Mt. OregonVG2%45 09 20.0121 75 70.01                                                                                                                                                                                                                                                                                                                                                                                                       |            | #            |            |             |       |                                |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | %            | 47 37 10.4 | 117 21 55.7 | -     | Spokane Schools, Ferris High S |
| SNI       H       46 27 80.0       119 39 50.0       PNNL station         SOS       %       46 14 38.5       122 08 12.0       1.270       Source of Smith Creek         STD       %       46 14 16.0       122 13 21.9       1.268       Studebaker Ridge         STW       %       48 09 03.1       123 40 11.1       0.308       Striped Peak         SVOH       %       48 17 21.8       122 37 54.8       0.010       Skagit Valley CC ANSS-SMO         TBM       +       47 10 12.0       120 35 52.8       1.006       Table Mt.         TCO       %       44 06 27.6       121 36 02.1       1.975       Three Creek Meadows, Oregon.         TDL       %       46 21 03.0       122 12 57.0       1.400       Tradedollar Lake         TRW       +       46 17 32.0       120 32 31.0       0.723       Toppenish Ridge         TWW       +       46 37 63 37.2       121 35 12.6       1.544       Beaver Bute. Oregon         VCR       %       45 88.2       120 59 17.4       1.015       Criterion Ridge, Oregon         VCR       %       45 19 05.0       121 27 54.3       1.716       Flag Point. Oregon         VGB       C       49 01 34.0       122 06 45.0                                                                                                                 |            | %            |            |             |       |                                |
| SNI       H       46 27 80.0       119 39 50.0       PNNL station         SOS       %       46 14 38.5       122 08 12.0       1.270       Source of Smith Creek         STD       %       46 14 16.0       122 13 21.9       1.268       Studebaker Ridge         STW       %       48 09 03.1       123 40 11.1       0.308       Striped Peak         SVOH       %       48 17 21.8       122 37 54.8       0.010       Skagit Valley CC ANSS-SMO         TBM       +       47 10 12.0       120 35 52.8       1.006       Table Mt.         TCO       %       44 06 27.6       121 36 02.1       1.975       Three Creek Meadows, Oregon.         TDL       %       46 21 03.0       122 12 57.0       1.400       Tradedollar Lake         TRW       +       46 17 32.0       120 32 31.0       0.723       Toppenish Ridge         TWW       +       46 37 63 37.2       121 35 12.6       1.544       Beaver Bute. Oregon         VCR       %       45 88.2       120 59 17.4       1.015       Criterion Ridge, Oregon         VCR       %       45 19 05.0       121 27 54.3       1.716       Flag Point. Oregon         VGB       C       49 01 34.0       122 06 45.0                                                                                                                 |            | 40<br>10     | 47 43 32.0 | 123 20 35.4 | 0.877 | South Mtn.                     |
| SSO         %         44 51 21.6         122 27 37.8         1.242         Sweet Springs, Oregon           STD         %         46 14 16.0         122 13 21.9         1.268         Studebaker Ridge           STW         %         48 09 03.1         123 40 11.1         0.308         Striped Peak           SVOH         %         48 17 21.8         122 37 54.8         0.010         Skagit Valley CC ANSS-SMO           TBM         +         47 10 12.0         120 35 52.8         1.006         Table Mt.           TCO         %         44 62 10 3.0         122 12 57.0         1.400         Tradedollar Lake           TDL         %         46 21 03.0         122 12 57.0         1.400         Tradedollar Lake           TWW         +         47 08 17.4         120 52 06.0         1.027         Teanaway           UWFH         %         48 32 46.0         123 00 43.0         0.010         UW Friday Harbor ANSS-SMO           VCR         %         44 58 88.2         120 59 17.4         1.015         Criterion Ridge, Oregon           VCR         %         45 19 05.0         121 27 54.3         1.716         Flag Point, Oregon           VGB         +         45 30 56.4         120 46 43.0         0.729<                                            | SNI        | Н            | 46 27 80.0 | 119 39 50.0 | -     |                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | %            |            | 122 08 12.0 | 1.270 |                                |
| STW $76$ $48$ 09 03.1 $123$ 40 11.1 $0.308$ Striped PeakSVOH $76$ $48$ 17 21.8 $122$ 37 54.8 $0.010$ Skagit Valley CC ANSS-SMOTBM $+$ $47$ 10 12.0 $120$ 35 52.8 $1.006$ Table Mt.TCO $76$ $44$ 06 27.6 $121$ 36 02.1 $1.975$ Three Creek Meadows, Oregon.TDH $76$ $45$ 17 23.4 $121$ 47 25.2 $1.541$ Tom.Dick.Harry Mt., OregonTDL $76$ $46$ 21 03.0 $122$ 12 57.0 $1.400$ Tradedollar LakeTRW $+$ $46$ 17 32.0 $120$ 32 31.0 $0.723$ Toppenish RidgeTWW $+$ $47$ 08 17.4 $120$ 52 06.0 $1.027$ TeanawayUWFH $76$ $48$ 32 46.0 $123$ 00 43.0 $0.010$ UW Friday Harbor ANSS-SMOVBE $76$ $45$ 03 37.2 $121$ 35 12.6 $1.544$ Beaver Buite, OregonVCR $76$ $44$ 58 58.2 $120$ 59 17.4 $1.015$ Criterion Ridge, OregonVBBC $49$ 01 34.0 $122$ 06 10.1 $0.404$ CanadaVFP $76$ $45$ 09 20.0 $122$ 16 15.0 $0.823$ Goat Mt. OregonVG2 $76$ $45$ 09 20.0 $122$ 16 15.0 $0.823$ Goat Mt. OregonVG2 $76$ $44$ 30 29.4 $120$ 37 07.8 $1.731$ Ingram Pt. OregonVLL $76$ $45$ 27 48.0 $121$ 40 45.0 $1.195$ Laurance Lk., OregonVG2C $48$ 24 50 $122$ 02 21.0 $1.150$ Little Larch, OregonVLL<                                                                                                                                                                                                                 |            | %<br>%       |            | 122 13 21.9 |       |                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STW        | %            | 48 09 03.1 | 123 40 11.1 | 0.308 | Striped Peak                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |             |       |                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | + 70         |            |             |       |                                |
| TRW+461732.01203231.00.723Toppenish RidgeTWW+470817.41205206.01.027TeanawayUWFH%483246.01230043.00.010UW Friday Harbor ANSS-SMOVBE%450337.21213512.61.544Beaver Butte, OregonVCR%445858.21205917.41.015Criterion Ridge, OregonVDBC490134.01220610.10.404CanadaVFP%451905.01212754.31.716Flag Point. OregonVG2%450920.01221615.00.823Goat Mt., OregonVG2%450920.01231927.80.067CanadaVIP%443029.41203707.81.731Ingram Pt., OregonVLL%452748.01214045.01.195Laurance Lk., OregonVLM%452318.612221.01.150Little Larch, OregonVLM%452318.612221.001.539Spence Mtn, OregonVLM%453052.21203356.40.244Wahluke SlopeVTH%451052.21033 <td></td> <td>%</td> <td>45 17 23.4</td> <td>121 47 25.2</td> <td>1.541</td> <td>Tom, Dick, Harry Mt., Oregon</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | %            | 45 17 23.4 | 121 47 25.2 | 1.541 | Tom, Dick, Harry Mt., Oregon   |
| UWFH       %       48 32 46.0       123 00 43.0       0.010       UW Friday Harbor ANSS-SMO         VBE       %       45 03 37.2       121 35 12.6       1.544       Beaver Butte, Oregon         VCR       %       44 58 58.2       120 59 17.4       1.015       Criterion Ridge, Oregon         VDB       C       49 01 34.0       122 06 10.1       0.404       Canada         VFP       %       45 19 05.0       121 27 54.3       1.716       Flag Point, Oregon         VG2       %       45 09 20.0       122 16 15.0       0.823       Goat Mt Oregon         VG2       %       45 09 20.0       123 19 27.8       0.067       Canada         VIP       %       44 30 29.4       120 37 07.8       1.731       Ingram Pt Oregon         VLL       %       45 32 18.6       122 02 21.0       1.150       Little Larch, Oregon         VLM       %       45 32 18.6       122 02 21.0       1.150       Little Larch, Oregon         VT2       +       46 58 02.4       119 59 57.0       1.270       Vantage2         VTH       %       45 10 52.2       120 33 40.8       0.773       The Trough, Oregon         WA2       +       46 645 19.2       119 33 56.4 </td <td></td> <td></td> <td></td> <td>122 12 57.0</td> <td></td> <td></td>                                            |            |              |            | 122 12 57.0 |       |                                |
| UWFH       %       48 32 46.0       123 00 43.0       0.010       UW Friday Harbor ANSS-SMO         VBE       %       45 03 37.2       121 35 12.6       1.544       Beaver Butte, Oregon         VCR       %       44 58 58.2       120 59 17.4       1.015       Criterion Ridge, Oregon         VDB       C       49 01 34.0       122 06 10.1       0.404       Canada         VFP       %       45 19 05.0       121 27 54.3       1.716       Flag Point, Oregon         VG2       %       45 09 20.0       122 16 15.0       0.823       Goat Mt Oregon         VG2       %       45 09 20.0       123 19 27.8       0.067       Canada         VIP       %       44 30 29.4       120 37 07.8       1.731       Ingram Pt Oregon         VLL       %       45 32 18.6       122 02 21.0       1.150       Little Larch, Oregon         VLM       %       45 32 18.6       122 02 21.0       1.150       Little Larch, Oregon         VT2       +       46 58 02.4       119 59 57.0       1.270       Vantage2         VTH       %       45 10 52.2       120 33 40.8       0.773       The Trough, Oregon         WA2       +       46 645 19.2       119 33 56.4 </td <td></td> <td></td> <td>40 17 52.0</td> <td>120 52 51.0</td> <td>1.027</td> <td></td>                             |            |              | 40 17 52.0 | 120 52 51.0 | 1.027 |                                |
| VDB         C         49 01 34.0         122 06 10.1         0.404         Canada           VFP         %         45 19 05.0         121 27 54.3         1.716         Flag Point. Oregon           VG2         %         45 09 20.0         122 16 15.0         0.823         Goat Mt Oregon           VGB         +         45 30 56.4         120 46 39.0         0.729         Gordon Butte, Oregon           VGZ         C         48 24 50.0         123 19 27.8         0.067         Canada           VIP         %         44 30 29.4         120 37 07.8         1.731         Ingram Pt Oregon           VLL         %         45 32 18.6         122 02 21.0         1.150         Laurance Lk., Oregon           VLM         %         45 32 18.6         122 02 21.0         1.150         Little Larch. Oregon           VSP         %         42 03 0.0         121 57 00.0         1.539         Spence Mtn, Oregon           VT2         +         46 58 02.4         119 59 57.0         1.270         Vantage2           VTH         %         45 10 52.2         120 33 40.8         0.773         The Trough, Oregon           WA2         +         46 64 51 9.2         119 57 14.4         0.821         Watervi                                                         |            | %            | 48 32 46.0 | 123 00 43.0 | 0.010 | UW Friday Harbor ANSS-SMO      |
| VDB         C         49 01 34.0         122 06 10.1         0.404         Canada           VFP         %         45 19 05.0         121 27 54.3         1.716         Flag Point. Oregon           VG2         %         45 09 20.0         122 16 15.0         0.823         Goat Mt Oregon           VGB         +         45 30 56.4         120 46 39.0         0.729         Gordon Butte, Oregon           VGZ         C         48 24 50.0         123 19 27.8         0.067         Canada           VIP         %         44 30 29.4         120 37 07.8         1.731         Ingram Pt Oregon           VLL         %         45 32 18.6         122 02 21.0         1.150         Laurance Lk., Oregon           VLM         %         45 32 18.6         122 02 21.0         1.150         Little Larch. Oregon           VSP         %         42 03 0.0         121 57 00.0         1.539         Spence Mtn, Oregon           VT2         +         46 58 02.4         119 59 57.0         1.270         Vantage2           VTH         %         45 10 52.2         120 33 40.8         0.773         The Trough, Oregon           WA2         +         46 64 51 9.2         119 57 14.4         0.821         Watervi                                                         |            | %            | 45 03 37.2 | 121 35 12.6 | 1.544 |                                |
| VGB+453056.41204639.00.729Gordon Butte, OregonVGZC482450.01231927.80.067CanadaVIP%443029.41203707.81.731Ingram Pt OregonVLL%452748.01214045.01.195Laurance Lk OregonVLM%453218.61220221.01.150Little Larch, OregonVSP%422030.01215700.01.539Spence Mtn, OregonVT2+465802.41195957.01.270Vantage2VTH%451052.21203340.80.773The Trough, OregonWA2+464519.21193356.40.244Wahluke SlopeWA1+474155.21195714.40.821WatervilleWIB%462034.81235230.60.503Willapa BayWIW+46453424.01224722.40.334WPO%464155.7121210.11.280White PassWRD+465812.01190841.40.375WardenWPW%464155.712132.01.189Wenatchee Rid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | %<br>C       |            |             |       |                                |
| VGB+453056.41204639.00.729Gordon Butte, OregonVGZC482450.01231927.80.067CanadaVIP%443029.41203707.81.731Ingram Pt OregonVLL%452748.01214045.01.195Laurance Lk OregonVLM%453218.61220221.01.150Little Larch, OregonVSP%422030.01215700.01.539Spence Mtn, OregonVT2+465802.41195957.01.270Vantage2VTH%451052.21203340.80.773The Trough, OregonWA2+464519.21193356.40.244Wahluke SlopeWA1+474155.21195714.40.821WatervilleWIB%462034.81235230.60.503Willapa BayWIW+46453424.01224722.40.334WPO%464155.7121210.11.280White PassWRD+465812.01190841.40.375WardenWPW%464155.712132.01.189Wenatchee Rid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VFP        | $\tilde{\%}$ | 45 19 05.0 | 121 27 54.3 | 1.716 | Flag Point, Oregon             |
| VGZC48 24 50.0123 19 27.80.067Canada $VIP$ %44 30 29.4120 37 07.81.731Ingram Pt Oregon $VLL$ %45 27 48.0121 40 45.01.195Laurance Lk Oregon $VLM$ %45 32 18.6122 02 21.01.150Little Larch. Oregon $VSP$ %42 20 30.0121 57 00.01.539Spence Mtn. Oregon $VT2$ +46 58 02.4119 59 57.01.270Vantage2 $VTH$ %45 10 52.2120 33 40.80.773The Trough, Oregon $WA2$ +46 45 19.2119 33 56.40.244Wahluke SlopeWA7+47 41 55.2119 57 14.40.821WatervilleWIB%46 20 34.8123 52 30.60.503Willapa BayWIW+46 25 45.6119 17 15.60.128Wooded IslandWPO%46 31 45.7121 32 10.11.280White PassWRD+46 58 12.0119 08 41.40.375WardenWRW%47 51 26.0120 52 52.01.189Wenatchee RidgeYA2+46 31 36.0120 31 48.00.652YakimaYEL#46 12 35.0121 11 60.01.750Yakima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | %            |            |             |       |                                |
| VLL%452748.01214045.01.195Laurance Lk., OregonVLM%453218.61220221.01.150Little Larch, OregonVSP%422030.01215700.01.539Spence Mtn, OregonVT2+4646502.21203340.80.773The Trough, OregonWA2+464519.21193356.40.244Wahluke SlopeWAT+474155.21195714.40.821WatervilleWIB%462034.81235230.60.503Willapa BayWIW+462545.61191715.60.128Wooded IslandWPO%453424.01224722.40.334West Portland, OregonWPW%464155.71213210.11.280White PassWRD+465812.01190841.40.375WardenWRW%475126.01205252.01.189Wenatchee RidgeYA2+463136.01203148.00.652YakimaYEL#461235.01221116.01.750Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Č            |            | 123 19 27.8 |       |                                |
| VLM%45 32 18.6122 02 21.01.150Little Larch. OregonVSP%42 20 30.0121 57 00.01.539Spence Mtn, OregonVT2+46 58 02.4119 59 57.01.270Vantage2VTH%45 10 52.2120 33 40.80.773The Trough, OregonWA2+46 45 19.2119 33 56.40.244Wahluke SlopeWAT+47 41 55.2119 57 14.40.821WatervilleWIB%46 20 34.8123 52 30.60.503Willapa BayWIW+46 25 45.6119 17 15.60.128Wooded IslandWPO%46 31 45.7121 32 10.11.280White PassWRD+46 58 12.0119 08 41.40.375WardenWRW%47 51 26.0120 52 52.01.189Wentchee RidgeYA2+46 31 36.0120 31 48.00.652YakimaYEL#46 12 35.0120 31 16.01.750Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VIP        | %            | 44 30 29.4 | 120 37 07.8 | 1.731 | Ingram Pt., Oregon             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            | 121 40 45.0 |       | Laurance Lk., Oregon           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |              |            |             |       |                                |
| WAT+474155.21195714.40.821WatervilleWIB $\%$ 462034.81235230.60.503Willapa BayWIW+462545.61191715.60.128Wooded IslandWPO $\%$ 453424.01224722.40.334West Portland, OregonWPW $\%$ 464155.71213210.11.280White PassWRD+465812.01190841.40.375WardenWRW $\%$ 475126.01205252.01.189Wenatchee RidgeYA2+463136.01203148.00.652YakimaYEL#461235.01221116.01.750Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VT2        | +            | 46 58 02.4 | 119 59 57.0 | 1.270 | Vantage2                       |
| WAT+474155.21195714.40.821WatervilleWIB $\%$ 462034.81235230.60.503Willapa BayWIW+462545.61191715.60.128Wooded IslandWPO $\%$ 453424.01224722.40.334West Portland, OregonWPW $\%$ 464155.71213210.11.280White PassWRD+465812.01190841.40.375WardenWRW $\%$ 475126.01205252.01.189Wenatchee RidgeYA2+463136.01203148.00.652YakimaYEL#461235.01221116.01.750Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VTH        |              |            |             |       | The Trough, Oregon             |
| WIB%462034.81235230.60.503Willapa BayWIW+462545.61191715.60.128Wooded IslandWPO%453424.01224722.40.334West Portland, OregonWPW%464155.71213210.11.280White PassWRD+465812.01190841.40.375WardenWRW%475126.01205252.01.189Wenatchee RidgeYA2+463136.01203148.00.652YakimaYEL#461235.01221116.01.750Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WAZ<br>WAT |              |            | 119 55 50.4 | 0.244 | Waterville                     |
| WIW       +       46 25 45.6       119 17 15.6       0.128       Wooded Island         WPO       %       45 34 24.0       122 47 22.4       0.334       West Portland, Oregon         WPW       %       46 41 55.7       121 32 10.1       1.280       White Pass         WRD       +       46 58 12.0       119 08 41.4       0.375       Warden         WRW       %       47 51 26.0       120 52 52.0       1.189       Wenatchee Ridge         YA2       +       46 31 36.0       120 31 48.0       0.652       Yakima         YEL       #       46 12 35.0       122 11 16.0       1.750       Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WIB        |              | 46 20 34.8 | 123 52 30.6 | 0.503 | Willapa Bay                    |
| WPW         %         46 41 55.7         121 32 10.1         1.280         White Pass           WRD         +         46 58 12.0         119 08 41.4         0.375         Warden           WRW         %         47 51 26.0         120 52 52.0         1.189         Wenatchee Ridge           YA2         +         46 31 36.0         120 31 48.0         0.652         Yakima           YEL         #         46 12 35.0         122 11 16.0         1.750         Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | +            | 46 25 45.6 |             | 0.128 | Wooded Island                  |
| WRD+46 58 12.0119 08 41.40.375WardenWRW $\%$ 47 51 26.0120 52 52.01.189Wenatchee RidgeYA2+46 31 36.0120 31 48.00.652YakimaYEL#46 12 35.0122 11 16.01.750Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WPU<br>WPW |              | 46 41 55.7 | 122 47 22.4 | 1.280 |                                |
| WRW         %         47 51 26.0         120 52 52.0         1.189         Wenatchee Ridge           YA2         +         46 31 36.0         120 31 48.0         0.652         Yakima           YEL         #         46 12 35.0         122 11 16.0         1.750         Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WRD        | +            | 46 58 12.0 | 119 08 41.4 | 0.375 | Warden                         |
| YEL # 46 12 35.0 122 11 16.0 1.750 Yellow Rock, Mt. St. Helens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WRW        |              | 47 51 26.0 | 120 52 52.0 | 1.189 |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YA2<br>YEL |              | 40 31 30.0 |             | 1.750 |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              |            |             |       |                                |

| Broad-band th | ree-componen | t stations operating | <b>TABLE 1B</b> at the end of the four | orth quarter 2 | 001. Symbols are as in Table 1A |
|---------------|--------------|----------------------|----------------------------------------|----------------|---------------------------------|
| STA           | F            | LAT                  | LONG                                   | EL             | NAME                            |
| BRKS          | %            | 47 45 19.1           | 122 17 17.9                            | 0.020          | Brookside ANSS-SMO              |
| COR           | U            | 44 35 08.5           | 123 18 11.5                            | 0.121          | Corvallis, Oregon (OSU BB )     |
| DBO           | %            | 43 07 09.0           | 123 14 34.0                            | 0.984          | Dodson Butte, Oregon (UO CREST  |
| ELW           | %            | 47 29 39.4           | 121 52 17.2                            | 0.267          | EchoLakeBPA BB-SMO-IDS20        |
| ERW           | %            | 48 27 14.4           | 122 37 30.2                            | 0.389          | Mt. Erie SMO-IDS24 BB           |
| EUO           | %            | 44 01 45.7           | 123 04 08.2                            | 0.160          | Eugene, OR U0 CREST BB SMO      |
| GNW           | %            | 47 33 51.8           | 122 49 31.0                            | 0.165          | Green Mt CREST BB SMO           |
| HAWA          | U            | 46 23 32.3           | 119 31 57.2                            | 0.367          | Hanford Nike USNSN BB           |
| HLID          | U            | 43 33 45.0           | 114 24 49.3                            | 1.772          | Hailey, ID USNSN BB             |
| KSXB          | N            | 41 49 51.0           | 123 52 33.0                            | -              | Camp Six, OR CREST BB           |
| KEB           | Ν            | 42 52 20.0           | 124 20 03.0                            | 0.818          | Edson Butte, OR CREST BB        |
| KRMB          | N            | 41 31 23.0           | 123 54 29.0                            | 1.265          | Red Mtn, OR CREST BB            |
| LON           | %            | 46 45 00.0           | 121 48 36.0                            | 0.853          | Longmire CREST BB LONLZ SMC     |
| LTY           | %            | 47 15 21.2           | 120 39 53.3                            | 0.970          | Liberty (BB)                    |
| NEW           | U            | 48 15 50.0           | 117 07 13.0                            | 0.760          | Newport Observatory USNSN BB    |
| OCWA          | U            | 47 44 56.0           | 124 10 41.2                            | 0.671          | Octopus Mtn. USNSN BB           |
| OFR           | %            | 47 56 00.0           | 124 23 41.0                            | 0.152          | Olympics - Forest Resource Cen  |
| OPC           | %            | 48 06 01.0           | 123 24 41.8                            | 0.090          | Olympic Penn College CREST BB   |
| PIN           | %            | 43 48 40.0           | 120 52 19.0                            | 1.865          | Pine Mt., Oregon (U0 CREST, B   |
| PNT           | C            | 49 18 57.6           | 119 36 57.6                            | 0.550          | Canada, BB                      |
| RAI           |              | 46 02 25.1           | 122 53 06.4                            | 1.520          | Trojan Plant, Oregon (OSU BB)   |
| RWW           | %            | 46 57 53.7           | 123 32 31.7                            | 0.015          | Ranney Well CREST BB SMO        |
| SEA           | %            | 47 39 15.8           | 122 18 29.3                            | 0.030          | UW, Seattle (Wood Anderson BB   |
| SNB           | Ċ            | 48 46 33.6           | 123 10 16.3                            | 0.408          | Canada BB                       |
| SP2           | %            | 47 33 23.3           | 122 14 52.8                            | 0.030          | Seward Park, Seattle SMO-IDS24  |
| SQM           | %            | 48 04 39.0           | 123 02 44.0                            | 0.030          | Sequim, WA (CREST BB SMO)       |
| TAKO          | %            | 43 44 36.0           | 124 04 56.0                            | 0.100          | Tahkenitch, OR CREST BB SMO     |
| TOLO          | %            | 44 37 19.0           | 123 55 21.0                            | 0.100          | Toledo BPA, OR CREST BB SMO     |
| TTW           | %            | 47 41 40.7           | 121 41 20.0                            | 0.542          | Tolt Res, WA CREST BB SMO       |
| WVOR          | Ŭ            | 42 26 02.0           | 118 38 13.0                            | 1.344          | Wildhorse Valley, Oregon (USNS  |

Table 1B lists broad-band stations used in locating seismic events in Washington and Oregon.

Table 1C lists strong-motion, three-component stations operating in Washington and Oregon that provide data in real or near-real time to the PNSN. Several of these stations also have broad-band instruments, as noted. The "SENSOR" field designates what type of seismic sensor is used;
A = Terra-Tech SSA-320 SLN triaxial accelerometer/Terra-Tech IDS24
A20 = Terra-Tech SSA-320 triaxial accelerometer/Terra-Tech IDS20 recording system,
FBA23 = Kinemetrics FBA23 accelerometers and Reftek recording system,

- EPI = Kinemetrics Episensor accelerometers and Reftek recording system.
  BB = Guralp CMG-40T 3-D broadband velocity sensor.
  BB3 = Guralp CMG3T 3-D broadband velocity sensor.
  BBZ = Broad Band sensor, PMD 2024, vertical component only.
  K2

• K2 = Kinemetrics Episensor accelerometers and K2 Recording System The "TELEMETRY" field indicates the type of telemetry used to recover the data.

- D = dial-up,
- E =continuously telemetered via Internet from a remote EARTHWORM system
- I = continuously telemetered via Internet,
- L = continuously telemetered via dedicated lease-line telephone lines,
- L-PPP = continuously telemetered via dedicated lease-line telephone lines using PPP protocol
- M = continuously telemetered via BPA microwave
- R = continuously telemetered via spread-spectrum radio

# - 7 - 2001 Annual Tech. Rept. USGS - 01HQAG0011

|              | F        | LAT                      | LONG                       | EL             | NAME                                                       | SENSORS           | TELEMETRY      |
|--------------|----------|--------------------------|----------------------------|----------------|------------------------------------------------------------|-------------------|----------------|
| ALCT         | %        | 47 38 48.8               | 122 2 15.7                 | 0.055          | Alcott Elementary                                          | K2                | 1              |
| ALST         | %        | 46 6 32.3                | 123 1 58.5                 | 0.198          | Alston                                                     | A20               | E,M            |
| ALVY<br>ATES | %        | 43 59 53.2               | 123 0 57.0<br>122 3 33.0   | 0.155          | Alvey                                                      | K2                | E,M            |
| BABE         | %<br>%   | 48 14 10.9<br>47 36 21.0 | 122 3 33.0                 | 0.010<br>0.010 | Trafton Elementary<br>Blakely Elementary                   | K2<br>K2          | l<br>I         |
| BEVT         | %        | 47 55 12.0               | 122 16 12.0                | 0.170          | Boeing Plant Everett                                       | K2<br>K2          | I.             |
| BRKS         | %        | 47 45 19.1               | 122 10 12.0                | 0.020          | Brookside Elementary                                       | K2,BBZ            | 1              |
| CSEN         | %        | 47 48 4.5                | 122 13 6.5                 | 0.055          | Crystal Springs Elementary                                 | K2                | i              |
| CSO          | #        | 45 31 1.0                | 122 41 22.5                | 0.036          | Canyon                                                     | FBA23             | D              |
| DBO          | %        | 43 7 9.0                 | 123 14 34.0                | 0.984          | Dodson Butte (CREST)                                       | EPI,BB3           | E,L-PPP        |
| EARN         | %        | 47 44 27.2               | 122 2 37.7                 | 0.159          | East Ridge Elementary                                      | K2                | I              |
| EGRN<br>ELW  | %<br>%   | 47 4 24.0<br>47 29 39.4  | 122 58 41.0<br>121 52 17.2 | 0.010          | Evergreen State College                                    | K2                | None           |
| ERW          | %        | 48 27 14.4               | 122 37 30.2                | 0.267<br>0.389 | Echo Lake<br>Mount Erie                                    | A,BB<br>A,BB      | D,M,L<br>D,L,M |
| EUO          | %        | 44 1 45.7                | 123 4 8.2                  | 0.160          | Eugene Golf Course (CREST)                                 | EPI,BB            | E,L-PPP        |
| EVCC         | %        | 48 0 27.0                | 122 12 15.3                | 0.000          | Everett Community College                                  | K2                | None           |
| EVGW         | %        | 47 51 15.8               | 122 9 12.2                 | 0.010          | Gateway Middle School                                      | K2                | l              |
| FINN         | %        | 47 43 10.2               | 122 13 55.9                | 0.121          | Finn Hill Junior High                                      | K2                | 1              |
| GNW          | %        | 47 33 51.8               | 122 49 31.0                | 0.165          | Green Mountain (CREST)                                     | EPI,BB3           | L-PPP          |
| HAO          | #        | 45 30 33.1               | 122 39 24.0                | 0.018          | Harrison                                                   | FBA23             | D              |
| HICC<br>HOLY | %<br>%   | 47 23 24.4<br>47 33 55.4 | 122 17 52.4<br>122 23 1.0  | 0.115          | Highline Community College                                 | K2                | I              |
| KDK          | %        | 47 35 35.4               | 122 25 1.0                 | 0.106<br>0.004 | Holy Rosary School<br>King Dome                            | K2<br>K2          | I<br>None      |
| KEEL         | %        | 45 33 0.8                | 122 53 42.4                | 0.067          | Keeler                                                     | A20               | None<br>D,E,M  |
| KICC         | %        | 47 34 37.9               | 122 37 52.4                | 0.010          | Kitsap County Central Communications                       | K2                | None           |
| KIMB         | %        | 47 34 29.3               | 122 18 10.1                | 0.069          | Kimball Elementary                                         | K2                | l              |
| KIMR         | %        | 47 30 11.0               | 122 46 2.0                 | 0.123          | Moderate Risk Waste Collection Facility                    | K2                | I              |
| KINR         | %        | 47 45 6.0                | 122 38 35.0                | 0.010          | North Road Shed                                            | K2                | I              |
| KITP         | %        | 47 40 30.0               | 122 37 47.0                | 0.076          | Wastewater Treatment Plant                                 | K2                | I              |
| KNJH<br>LANE | %<br>%   | 47 23 5.0<br>44 3 6.5    | 122 13 42.0<br>123 13 54.8 | 0.010<br>0.120 | Kent Junior High                                           | K2                | I<br>F M       |
| LAWT         | %        | 47 39 23.4               | 122 23 21.9                | 0.120          | Lane<br>Lawton Elementary                                  | K2<br>A20         | E,M            |
| LEOT         | %        | 47 46 4.4                | 122 6 56.2                 | 0.115          | Leota Junior High                                          | K2                | I              |
| LON          | %        | 46 45 0.0                | 121 48 36.0                | 0.853          | Longmire Springs (CREST)                                   | EPI,BB3           | L-PPP          |
| LTY          | %        | 47 15 21.2               | 120 39 53.4                | 0.970          | Liberty Heights Mine (CREST)                               | BB3               | ī              |
| MARY         | %        | 47 39 45.7               | 122 7 11.6                 | 0.011          | Marymoor Park                                              | K2                | I              |
| MBKE         | %        | 48 55 2.0                | 122 8 29.0                 | 1.010          | Kendall Elementary                                         | K2                | 1              |
| MBPA         | %        | 47 53 54.7               | 121 53 20.2                | 0.186          | Monroe                                                     | A20               | D,M,L          |
| MPL<br>MURR  | %<br>%   | 47 28 7.0<br>47 7 12.0   | 122 11 4.5<br>122 33 36.0  | 0.122<br>0.100 | Maple Valley                                               | A                 | D,M,L          |
| NOWS         | %        | 47 41 12.0               | 122 15 21.2                | 0.002          | Camp Murray<br>NOAA Sand Point                             | K2<br>A20         | None           |
| OHC          | %        | 47 20 2.0                | 123 9 29.0                 | 0.010          | Hood Canal Junior High                                     | K2                | I              |
| OPC          | %        | 48 6 1.0                 | 123 24 41.8                | 0.090          | Peninsula College (CREST)                                  | EPI,BB            | i              |
| PAYL         | %        | 47 11 34.0               | 122 18 46.0                | 0.010          | Aylen Junior High                                          | K2                | i              |
| PCEP         | %        | 47 6 41.8                | 122 17 24.0                | 0.160          | Puyallup East Sheriff Precinct                             | K2                | I              |
| PCFR         | %        | 46 59 23.3               | 122 26 27.4                | 0.137          | Roy Training Center                                        | K2                | I              |
| PCMD<br>PIN  | %<br>%   | 46 53 20.9               | 122 18 0.9                 | 0.239          | Mountain Detachment                                        | K2                | I DDD          |
| PNLK         | %<br>%   | 43 48 40.0<br>47 34 54.5 | 120 52 19.0<br>122 2 1.0   | 1.865<br>0.128 | Pine Mtn. (CREST)<br>Pine Laka Middla Sahaal               | EPI.BB3           | E,L-PPP        |
| DAW          | %        | 47 37 54.3               | 122 21 15.5                | 0.128          | Pine Lake Middle School<br>Queen Anne                      | K2<br>A20         | I<br>L         |
| RAW          | %        | 47 20 14.0               | 121 55 53.2                | 0.208          | Raver                                                      | A20<br>A20        | L<br>M,L       |
| RBEN         | %        | 47 26 6.7                | 122 11 10.0                | 0.152          | Benson Hill Elementary                                     | K2                | l              |
| RBO          | #        | 45 32 27.0               | 122 33 51.5                | 0.158          | Rocky Butte                                                | FBA23             | D              |
| RHAZ         | %        | 47 32 24.7               | 122 11 1.3                 | 0.108          | Hazelwood Elementary                                       | A20               | Ι              |
| ROSS         | %        | 45 39 43.0               | 122 39 25.0                | 0.061          | Ross                                                       | A20               | Е              |
| RRHS<br>RWW  | %<br>%   | 46 47 58.6               | 123 2 25.4                 | 0.047          | Rochester High School                                      | K2                | l              |
| BES          | 90<br>%  | 46 57 53.7<br>48 46 5.9  | 123 32 31.7<br>122 24 54.2 | 0.015          | Ranney Well (CREST)                                        | EPI,BB3           | L-PPP          |
| EA           | %        | 47 39 15.8               | 122 18 29.3                | 0.119<br>0.030 | Silver Beach Elementary School<br>University of Washington | K2                | 1              |
| FER          | %        | 47 37 10.4               | 117 21 55.7                | 0.000          | Ferris High School                                         | A20,PMD2023<br>K2 | L<br>I         |
| GAR          | %        | 47 40 37.8               | 117 24 50.3                | 0.579          | Garfield Elementary                                        | K2<br>K2          | 1              |
| MNR          | %        | 47 12 16.6               | 122 12 53.4                | 0.010          | Sumner High School                                         | K2                | ĩ              |
| P2           | %        | 47 33 23.3               | 122 14 52.8                | 0.030          | Seward Park                                                | A.BB              | L              |
| QM           | %        | 48 4 39.0                | 123 2 44.0                 | 0.030          | Sequim Battelle Properties (CREST)                         | EPI,BB            | I,R            |
| VOH          | %<br>07. | 48 17 21.8               | 122 37 54.8                | 0.010          | Skagit Valley College Oak Harbor                           | K2                | 1              |
| WES<br>WID   | %<br>%   | 47 42 51.0               | 117 27 53.2                | 0.623          | Westview Elementary                                        | K2                | 1              |
| AKO          | %<br>%   | 48 0 31.0<br>43 44 36.0  | 122 24 42.0<br>124 4 56.0  | 0.010<br>0.100 | South Whidbey Primary School                               | K2                | I<br>ME        |
| BPA          | %<br>%   | 47 15 29.0               | 124 4 56.0                 | 0.100          | Tahkenitch (CREST)<br>Tacoma                               | EPI,BB            | M,E            |
| KCO          | %        | 47 32 12.7               | 122 12 1.0                 | 0.002          | King County Airport                                        | A20<br>A20        | M,L,D<br>I     |
| OLO          | %        | 44 37 19.0               | 123 55 21.0                | 0.100          | Toledo (CREST)                                             | EPI,BB            | ME             |
| TW           | %        | 47 41 40.7               | 121 41 20.0                | 0.542          | Tolt Reservoir (CREST)                                     | EPI,BB3           | I              |
| IPS          | %        | 47 15 50.2               | 122 29 1.1                 | 0.113          | University of Puget Sound                                  | K2                | I              |
| (337)7711    | C7       | 48 32 46.0               | 122 0 42 0                 | 0.010          |                                                            |                   | -              |
| JWFH<br>VHS  | %<br>%   | 47 25 25.1               | 123 0 43.0<br>122 27 13.1  | 0.010<br>0.095 | Friday Harbor Laboratories<br>Vashon High School           | K2<br>K2          | I              |

### **Data Processing**

The PNSN seismic recording system uses real-time telemetry, and operates in an 'event triggered' mode. Analog and strong-motion digital data are recorded at 100 samples per sec., while broad-band digital data are digitized at 40 or 50 samples per sec. Arrival times, first motion polarities, signal durations, signal amplitudes, locations and focal mechanisms (when possible) are determined in post-processing. Digital data are processed for all locatable teleseisms, regional events, and local events. Each trace data file has an associated 'pickfile' which includes arrival times, polarities, coda lengths, and other data.

EARTHWORM is our main PNSN data-acquisition system. The old SUNWORM system operates as a digitizer for the analog stations. Analog stations, and most digital stations, are continuously telemetered in real time. Only one broadband stations (LTY) and three USGS strong-motion stations in Portland record only on-site. Data are retrieved via dial-up modem, if needed. All of the real-time data are continuously recorded into temporary storage areas called "wave tanks" which can accommodate about 24 hours of continuous data for the entire network. Triggering algorithms create individual event files.

Continuous data are archived for a small subset of stations, usually about 20, mostly on volcanoes. We continue to use the UW2 pickfile and data formats, and analysis tools which have been in place for the past several years.

Unedited network-trigger trace data are stored on ongoing "network-archive" backup tapes. Edited "Master Event" trace data files are kept for all seismic events. These "Master Event" files are also translated to IRIS-SEED format and submitted to the IRIS Data Management Center for archive and distribution.

Through EARTHWORM, we exchange real-time data with the University of Oregon, The Battelle Pacific Northwest National Labs, the Pacific Geoscience Centre, the Montana Bureau of Mines, and CAL-NET. In addition, we send real-time data to the Alaska Tsunami Warning Center, the Pacific Tsunami Warning Center, the Cascade Volcano Observatory, and the National Earthquake Information Center,

The entire PNSN catalog has been contributed to the CNSS composite catalog located at the Northern California Earthquake Data Center. The PNSN section of the CNSS catalog is updated daily.

Starting in the fall of 2001, we started shipping a large portion of our waveform data to the IRIS DMC in near real time. This was done by running the *ew2seed* program at IRIS which connects to our EARTHWORM waveservers and extracts 1/2 hour of data at a time. Sevral months of testing proved successful. At the end of the year we started sending all PNSN traces from all wave servers so that IRIS has a complete copy of all our continuous data in the BUD (Buffer of Uniform Data) system.

#### Publications

Publications wholly or partly supported under this operating agreement are listed in Appendix 2.

#### SEISMICITY, EMERGENCY NOTIFICATION, AND OUTREACH

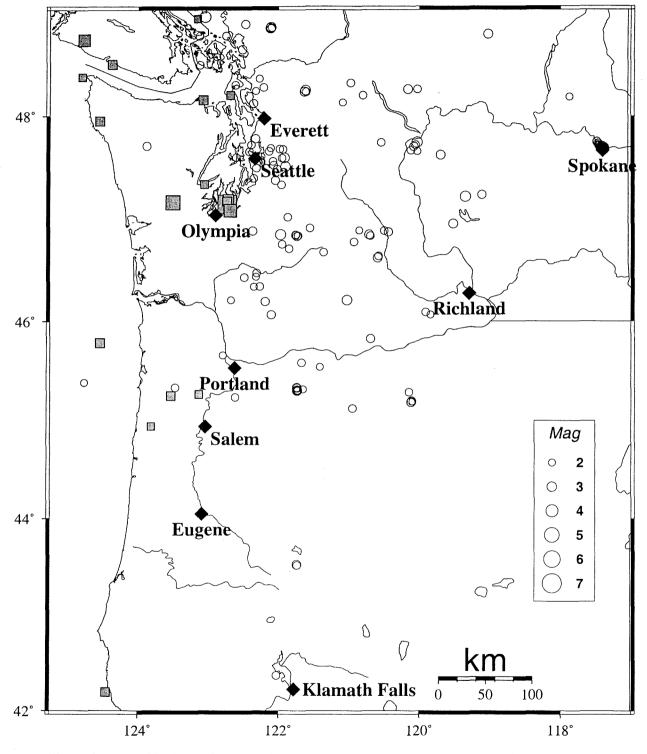

#### Seismicity

Figure 2 shows earthquakes of magnitude 2.0 or larger located in Washington and Oregon during this reporting period. Table 2 lists earthquakes recorded by the PNSN during 2001 which were reported felt. Table 3 gives information on seismic activity recorded at the PNSN annually since 1980. During this reporting period there were 23 earthquakes reported felt west of the Cascades in Washington, ranging in magnitude from 1.7 to 6.8. Only one Oregon earthquake was reported felt this year; a magnitude 1.9 event.

By far the most interesting event during the reporting period was the moment-magnitude 6.8 Nisqually earthquake of Feb. 28, 2001. It occurred at a depth of about 52 km, about 18 km northeast of Olympia, WA. Extensive information is available on the Nisqually Earthquake Clearinghouse:

### http://maximus.ce.washington.edu/~nisqually/index.html

A great deal has been and will be written about the Nisqually earthquake, which caused significant damages. Only four small aftershocks were recorded in the two weeks following the mainshock, but a possible late aftershock of magnitude 4.3 occurred nearby about six months later. Appendix 3 is a reprint of the PNSN's



-9-

Figure 2. Year 2001 located earthquakes, magnitude >= 2.0. Grey squares indicate earthquakes with depth greater than 30km. Unfilled circles indicate earthquakes with depth <= 30km. Black diamonds indicate cities. Area covered is 117W-125.25W, 42N-49N

"Preliminary Report on the Mw=6.8 Nisqually, Washington Earthquake of 28, February 2001", from Seismological Research Letters, V. 72, N. 3, pp. 352-361.

The 2001 Nisqually earthquake was the largest of a unusual series of Benioff zone earthquakes that began in July 1999 with a M 5.8 earthquake at about 41 km depth beneath Satsop WA. The Nisqually earthquake, in Feb. 2001, was east of the Satsop earthquake and, at 52 km, deeper. A M 5.0 earthquake on June 10, 2001 was near the location and depth of the 1999 Satsop earthquake, and a M 4.3 earthquake on July 22 (UTC) was close to the location and depth of the Nisqually event.

East of the Cascades in Washington, more than 70 earthquakes were felt during 2001. Many of these were tiny events in the Spokane urban area, where a vigorous sequence of earthquakes began in May. Activity continued in bursts, with the largest earthquake M 4.0 on November 11. No comparable sequence is known in the history of Spokane. For additional details see the quarterly reports, or the PNSN web page "The 2001 Spokane Earthquake Sequence":

http://www.ess.washington.edu/SEIS/EQ\_Special/WEBDIR\_01062514151n/overview.html Magnitudes of the Spokane felt earthquakes ranged from -0.9 to 4.0. Network coverage was initially sparse, and in addition to the 98 locatable earthquakes, there were many additional felt events early in the sequence too small to locate.

|                                        | Felt Earthquakes during 2001 |                    |             |            |                                                                                                     |  |  |  |
|----------------------------------------|------------------------------|--------------------|-------------|------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| DATE-(UTC)-TIME                        | LAT(N)                       | LON(W)             | DEPTH       | MAG        | COMMENTS                                                                                            |  |  |  |
| yy/mm/dd hh:mm:ss                      | deg.                         | deg.               | km          |            |                                                                                                     |  |  |  |
| 01/02/14 03:54:54                      | 48.75N                       | 123.12W            | 20.9        | 2.3        | 26.0 km NNW of Friday Harbor, WA                                                                    |  |  |  |
| 01/02/14 22:03:58                      | 47.51N                       | 121.89W            | 6.6<br>22.6 | 3.1<br>2.2 | 5.4 km S of Fall City, WA                                                                           |  |  |  |
| 01/02/24 07:40:50                      | 47.53N                       | 122.06W            | 0.6         | 3.2        | 13.2 km SE of Bellevue, WA                                                                          |  |  |  |
| 01/02/28 07:16:13<br>01/02/28 18:54:32 | 47.75N<br>47.14N             | 120.03W<br>122.72W | 51.9        | 5.2<br>6.8 | 10.2 km S of Chelan, WA<br>17.0 km NE of Olympia, WA                                                |  |  |  |
| 01/03/01 09:10:20                      | 47.14N<br>47.19N             | 122.72 W           | 54.3        | 3.4        | 21.6 km NE of Olympia, WA                                                                           |  |  |  |
| 01/03/01 14:23:34                      | 47.18N                       | 122.72W            | 51.4        | 2.7        | 19.4 km NE of Olympia, WA                                                                           |  |  |  |
| 01/03/10 06:26:05                      | 47.48N                       | 122.79W            | 19.3        | 1.7        | 15.9 km SW of Bremerton, WA                                                                         |  |  |  |
| 01/03/11 17:08:54                      | 47.60N                       | 121.91W            | 21.6        | 2.9        | 4.4 km NNW of Fall City, WA                                                                         |  |  |  |
| 01/03/16 02:41:11                      | 47.56N                       | 122.07W            | 18.1        | 2.2        | 10.2 km ESE of Bellevue, WA                                                                         |  |  |  |
| 01/03/21 10:31:05                      | 46.21N                       | 121.02W            | 0.9         | 2.9        | 35.4 km E of Mt Adams, WA                                                                           |  |  |  |
| 01/04/07 16:02:35                      | 48.72N                       | 124.76W            | 41.8        | 3.9        | 90.6 km NNW of Forks, WA                                                                            |  |  |  |
| 01/06/10 13:19:11                      | 47.16N                       | 123.50W            | 40.7        | 5.0        | 18.3 km N of Satsop, WA                                                                             |  |  |  |
| 01/06/25 14:15:22                      | 47.68N                       | 117.39W            | 10.5        | 3.9        | 1.5 km NE of Spokane, WA (Mission & N Division)                                                     |  |  |  |
| 01/06/25 15:01:27                      | 47.70N                       | 117.41W            | 11.1        | 3.4        | 3.3 km N of Spokane, WA (Mission & N Division)                                                      |  |  |  |
| 01/06/25 16:49:16                      | 47.73N                       | 117.47W            | 0.0         | 2.3        | 8.7 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/06/25 22:58:13                      | 47.72N                       | 117.46W            | 0.0         | 2.3        | 6.8 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/06/26 01:21:21                      | 47.75N                       | 117.48W            | 0.0         | 2.1        | 11.1 km NNW of Spokane, WA (Mission & N Division)                                                   |  |  |  |
| 01/06/26 05:52:26                      | 47.75N                       | 117.48W            | 8.0         | 2.4        | 10.6 km NNW of Spokane, WA (Mission & N Division)                                                   |  |  |  |
| 01/06/27 09:07:45                      | 47.72N                       | 117.45W            | 0.4         | 2.4        | 6.5 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/06/27 14:45:37                      | 47.70N                       | 117.41W            | 7.3         | 2.9        | 4.2 km N of Spokane, WA (Mission & N Division)                                                      |  |  |  |
| 01/06/28 07:51:42                      | 47.67N                       | 117.39W            | 0.4         | 2.3        | 1.4 km NE of Spokane, WA (Mission & N Division)                                                     |  |  |  |
| 01/06/28 11:47:48                      | 47.67N                       | 117.41W            | 0.5         | 0.7        | 0.4 km WNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/06/29 01:13:27                      | 47.68N                       | 117.42W            | 0.5         | 2.4        | 1.7 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/06/30 01:23:31                      | 46.85N                       | 121.97W            | 7.7         | 3.3        | 16.2 km W of Mt Rainier, WA                                                                         |  |  |  |
| 01/07/01 05:44:13                      | 47.67N                       | 117.41W            | 0.5         | 2.9<br>2.9 | 0.5 km N of Spokane, WA (Mission & N Division)                                                      |  |  |  |
| 01/07/01 05:45:43<br>01/07/01 06:07:13 | 47.68N<br>47.68N             | 117.40W<br>117.41W | 0.8<br>0.4  | 2.9        | 1.8 km NNE of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/07/02 17:48:29                      | 47.67N                       | 117.41W            | 0.4         | 0.8        | 1.0 km NNW of Spokane, WA (Mission & N Division)<br>1.1 km NW of Spokane, WA (Mission & N Division) |  |  |  |
| 01/07/03 21:20:27                      | 47.67N                       | 117.41W            | 0.4         | 2.2        | 0.7 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/07/08 11:16:32                      | 47.68N                       | 117.41W            | 0.5         | 1.5        | 1.5 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/07/16 11:37:35                      | 45.11N                       | 122.51W            | 13.1        | 1.9        | 21.4 km SE of Canby, OR                                                                             |  |  |  |
| 01/07/22 15:13:52                      | 47.08N                       | 122.68W            | 52.4        | 4.3        | 16.3 km ENE of Olympia. WA                                                                          |  |  |  |
| 01/07/24 13:31:06                      | 47.49N                       | 122.02W            | 16.4        | 2.2        | 9.3 km N of Maple Valley, WA                                                                        |  |  |  |
| 01/07/29 06:26:53                      | 47.68N                       | 117.41W            | 0.4         | 2.3        | 1.1 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/07/29 06:37:58                      | 47.68N                       | 117.41W            | 0.2         | 1.3        | 1.6 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/07/29 07:04:24                      | 47.66N                       | 117.39W            | 0.3         | 1.2        | 1.5 km SE of Spokane, WA (Mission & N Division)                                                     |  |  |  |
| 01/07/30 20:35:08                      | 47.67N                       | 117.42W            | 0.3         | 1.8        | 1.4 km NW of Spokane, WA (Mission & N Division)                                                     |  |  |  |
| 01/07/31 01:38:10                      | 47.68N                       | 117.40W            | 0.5         | 3.2        | 1.8 km NNE of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/07/31 05:07:31                      | 47.68N                       | 117.41W            | 0.4         | 2.2        | 1.3 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/07/31 05:24:33                      | 47.69N                       | 117.42W            | 0.5         | 1.5        | 2.4 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/07/31 06:48:11                      | 47.71N                       | 117.47W            | 0.5         | 1.8        | 6.9 km NW of Spokane, WA (Mission & N Division)                                                     |  |  |  |
| 01/07/31 08:51:55                      | 47.72N                       | 117.45W            | 2.1         | 1.6        | 7.1 km NNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/07/31 16:27:42                      | 47.68N                       | 117.42W            | 0.5         | 1.8        | 1.5 km NW of Spokane, WA (Mission & N Division)                                                     |  |  |  |
| 01/08/01 14:29:48                      | 47.67N                       | 117.42W            | 0.5         | 2.2        | 0.9 km WNW of Spokane, WA (Mission & N Division)                                                    |  |  |  |
| 01/08/09 13:31:23                      | 47.68N                       | 117.42W            | 0.8         | 1.5        | 1.7 km NW of Spokane, WA (Mission & N Division)                                                     |  |  |  |
| 01/08/14 13:28:27                      | 44.28N                       | 125.46W            | 10.0        | 1.5        | 119.1 km WSW of Newport, OR                                                                         |  |  |  |

TABLE 2

|                   |        |         | Felt Earth | iquakes di | uring 2001                                       |
|-------------------|--------|---------|------------|------------|--------------------------------------------------|
| DATE-(UTC)-TIME   | LAT(N) | LON(W)  | DEPTH      | MAG        | COMMENTS                                         |
| yy/mm/dd hh:mm:ss | deg.   | deg.    | km         |            |                                                  |
| 01/08/19 06:17:32 | 48.25N | 121.61W | 1.7        | 3.0        | 1.0 km WSW of Darrington, WA                     |
| 01/08/25 17:52:34 | 48.23N | 121.60W | 2.7        | 2.1        | 2.1 km S of Darrington, WA                       |
| 01/08/30 03:47:31 | 48.23N | 121.62W | 4.8        | 2.7        | 2.9 km SW of Darrington, WA                      |
| 01/09/28 18:34:53 | 47.68N | 117.38W | 1.8        | 2.8        | 2.1 km NE of Spokane, WA (Mission & N Division)  |
| 01/09/28 18:37:53 | 47.66N | 117.37W | 0.3        | 1.9        | 2.7 km ESE of Spokane, WA (Mission & N Division) |
| 01/09/28 18:38:37 | 47.67N | 117.40W | 0.6        | 2.6        | 0.7 km NNE of Spokane, WA (Mission & N Division) |
| 01/09/28 18:41:40 | 47.67N | 117.39W | 0.0        | 1.6        | 1.0 km ENE of Spokane, WA (Mission & N Division) |
| 01/10/05 02:26:41 | 48.82N | 122.11W | 12.1       | 3.0        | 7.6 km E of Deming, WA                           |
| 01/10/06 10:52:09 | 48.83N | 122.10W | 13.2       | 3.0        | 8.2 km E of Deming, WA                           |
| 01/10/15 04:57:01 | 48.15N | 123.06W | 44.4       | 2.9        | 28.6 km E of Port Angeles, WA                    |
| 01/11/10 18:30:59 | 48.93N | 123.04W | 15.4       | 3.4        | 21.7 km S of Vancouver, BC                       |
| 01/11/11 16:00:29 | 47.68N | 117.40W | 4.7        | 4.0        | 2.0 km NNE of Spokane, WA (Mission & N Division) |
| 01/11/11 17:21:33 | 47.68N | 117.40W | 0.6        | 3.1        | 1.3 km NNE of Spokane, WA (Mission & N Division) |
| 01/11/12 03:03:02 | 47.68N | 117.40W | 0.6        | 3.3        | 2.0 km N of Spokane, WA (Mission & N Division)   |
| 01/11/12 03:07:40 | 47.68N | 117.41W | 0.6        | 1.9        | 1.7 km N of Spokane, WA (Mission & N Division)   |
| 01/11/12 03:11:15 | 47.68N | 117.41W | 0.6        | 2.4        | 1.9 km NNW of Spokane, WA (Mission & N Division) |
| 01/11/12 11:44:18 | 47.68N | 117.39W | 0.6        | 1.7        | 2.4 km NE of Spokane, WA (Mission & N Division)  |
| 01/11/12 13:25:59 | 47.68N | 117.40W | 0.5        | 1.9        | 2.0 km NNE of Spokane, WA (Mission & N Division) |
| 01/11/13 05:41:45 | 47.69N | 117.40W | 0.6        | 2.3        | 2.4 km N of Spokane, WA (Mission & N Division)   |
| 01/11/13 07:39:05 | 47.68N | 117.42W | 0.6        | 2.1        | 1.4 km NW of Spokane, WA (Mission & N Division)  |
| 01/11/13 10:14:01 | 48.86N | 122.46W | 22.0       | 2.5        | 11.7 km N of Bellingham, WA                      |
| 01/11/13 20:26:26 | 47.69N | 117.40W | 0.6        | 3.0        | 2.2 km NNE of Spokane, WA (Mission & N Division) |
| 01/11/14 01:50:51 | 47.69N | 117.38W | 0.6        | 1.2        | 3.6 km NE of Spokane, WA (Mission & N Division)  |
| 01/11/14 16:41:20 | 47.69N | 117.32W | 0.6        | 1.6        | 7.3 km ENE of Spokane, WA (Mission & N Division) |
| 01/11/15 00:11:46 | 47.69N | 117.39W | 0.0        | 2.1        | 2.7 km NNE of Spokane, WA (Mission & N Division) |
| 01/11/16 01:42:29 | 47.68N | 117.39W | 0.5        | 1.8        | 2.2 km NE of Spokane, WA (Mission & N Division)  |
| 01/11/17 16:18:49 | 47.68N | 117.42W | 0.4        | 1.4        | 1.9 km NNW of Spokane, WA (Mission & N Division) |
| 01/11/18 19:51:12 | 47.68N | 117.42W | 0.8        | 1.6        | 1.5 km NW of Spokane, WA (Mission & N Division)  |
| 01/11/19 04:47:06 | 47.68N | 117.41W | 2.2        | 1.2        | 1.5 km NNW of Spokane, WA (Mission & N Division) |
| 01/11/19 04:47:52 | 47.69N | 117.41W | 1.2        | 0.5        | 2.9 km NNW of Spokane, WA (Mission & N Division) |
| 01/11/20 06:03:56 | 47.67N | 117.44W | 2.6        | 1.0        | 2.3 km WNW of Spokane, WA (Mission & N Division) |
| 01/11/20 12:14:42 | 47.67N | 117.44W | 0.0        | 1.4        | 2.5 km W of Spokane, WA (Mission & N Division)   |
| 01/11/22 04:43:01 | 47.68N | 117.42W | 2.5        | 1.4        | 1.2 km NW of Spokane, WA (Mission & N Division)  |
| 01/11/24 00:32:10 | 47.67N | 117.43W | 2.1        | -0.5       | 1.6 km WNW of Spokane, WA (Mission & N Division) |
| 01/11/26 04:13:15 | 47.68N | 117.42W | 2.2        | 0.9        | 1.6 km NNW of Spokane, WA (Mission & N Division) |
| 01/11/26 09:41:37 | 47.69N | 117.40W | 0.0        | -0.8       | 3.0 km NNE of Spokane, WA (Mission & N Division) |
| 01/11/26 09:41:53 | 47.68N | 117.43W | 2.1        | 0.0        | 1.8 km NW of Spokane, WA (Mission & N Division)  |
| 01/11/26 09:59:53 | 47.68N | 117.38W | 4.7        | -1.6       | 2.3 km NE of Spokane, WA (Mission & N Division)  |
| 01/11/26 10:12:11 | 47.68N | 117.40W | 2.3        | -1.6       | 1.6 km N of Spokane, WA (Mission & N Division)   |
| 01/11/26 11:56:07 | 47.68N | 117.41W | 2.2        | 0.7        | 1.8 km N of Spokane, WA (Mission & N Division)   |
| 01/11/27 08:26:58 | 47.65N | 117.44W | 0.5        | -0.9       | 3.4 km SW of Spokane, WA (Mission & N Division)  |
| 01/12/06 23:24:08 | 46.89N | 122.36W | 20.4       | 2.4        | 8.1 km WNW of Eatonville, WA                     |
| 01/12/19 06:39:26 | 47.69N | 117.38W | 0.0        | -0.8       | 3.1 km NNE of Spokane, WA (Mission & N Division) |
| 01/12/19 21:32:17 | 47.67N | 117.44W | 2.0        | -0.8       | 2.2 km WNW of Spokane, WA (Mission & N Division) |
| 01/12/20 03:03:20 | 47.67N | 117.44W | 2.0        | -0.5       | 2.3 km W of Spokane, WA (Mission & N Division)   |
| 01/12/20 08:30:43 | 47.67N | 117.43W | 1.8        | -0.1       | 2.1 km W of Spokane, WA (Mission & N Division)   |
| 01/12/25 03:58:53 | 47.68N | 117.42W | 0.2        | -0.7       | 1.7 km NW of Spokane, WA (Mission & N Division)  |
| 01/12/27 22:11:20 | 47.66N | 117.43W | 0.0        | -0.5       | 2.0 km W of Spokane, WA (Mission & N Division)   |
| 01/12/29 11:57:27 | 47.67N | 117.43W | 0.0        | -0.8       | 2.0 km W of Spokane. WA (Mission & N Division)   |
|                   |        |         |            |            | • • • • • • • • • • • • • • • • • • • •          |

.

TABLE 2 (continued)

| TABLE 3         Annual counts of events recorded by the PNSN, 1980-2001 |              |            |               |              |                       |            |  |
|-------------------------------------------------------------------------|--------------|------------|---------------|--------------|-----------------------|------------|--|
|                                                                         |              |            | s recorded by | the PNSN     | , 1980-2001           |            |  |
| Year                                                                    | Total #      | Out of Net |               | Insid        | e Net                 |            |  |
|                                                                         |              |            | Unlocated     | Total        | Located<br>EQs(#felt) | Blasts     |  |
| 80<br>81                                                                | 4576<br>5155 | 253<br>291 | 1075<br>1474  | 3246<br>3385 | 2874(18)<br>2672(29)  | 372<br>713 |  |
| 82                                                                      | 4452         | 329        | 1824          | 2297         | 1948(20)              | 349        |  |
| 83                                                                      | 4489         | 405        | 2338          | 1745         | 1356(15)              | 389        |  |
| 84                                                                      | 3144         | 267        | 1095          | 1780         | 1409(16)              | 371        |  |
| 85                                                                      | 3560         | 266        | 1168          | 2122         | 1890(16)              | 232        |  |
| 86                                                                      | 2554         | 318        | 452           | 1776         | 1594(21)              | 182        |  |
| 87<br>88                                                                | 1981<br>2249 | 537<br>507 | 127<br>114    | 1304<br>1624 | 966(22)<br>1263(19)   | 338<br>361 |  |
| 89<br>89                                                                | 2781         | 501        | 137           | 2136         | 1835(38)              | 301        |  |
| 90                                                                      | 3433         | 717        | 204           | 2505         | 2096(26)              | 409        |  |
| 91                                                                      | 3083         | 675        | 315           | 2085         | 1687(26)              | 398        |  |
| 92                                                                      | 3522         | 891        | 235           | 2381         | 1993(22)              | 388        |  |
| 93                                                                      | 5594         | 731        | 626           | 4224         | 3877(35)              | 347        |  |
| 94                                                                      | 6243         | 900        | 1518          | 3816         | 3424(28)              | 392        |  |
| 95                                                                      | 5354         | 959        | 1462          | 2915         | 2539(16)              | 376        |  |
| 96<br>07                                                                | 4741         | 911        | 1192          | 2628         | 2214(39)              | 414        |  |
| 97<br>98                                                                | 3881<br>7463 | 728<br>831 | 904<br>2174   | 2239<br>4430 | 1992(35)<br>4176(11)  | 247<br>254 |  |
| 98<br>99                                                                | 4505         | 803        | 1483          | 2187         | 1965(30)              | 234        |  |
| óó                                                                      | 5625         | 1121       | 1686          | 2818         | 2482(18)              | 341        |  |
| ŐĨ                                                                      | 5945         | 1090       | 2106          | 2730         | 2258(95)              | 472        |  |

### **Emergency Notification**

The RACE system, discussed earlier, is a pager-based alarm system that updates earthquake locations on a map displayed on a PC screen. When a "significant" event (magnitude 2.9 or larger) is located by the PNSN automatic systems, a preliminary location and magnitude is sent within minutes to seismologists and the RACE system via pager. The same information is forwarded via fax and e-mail to others with critical need. A set of web-pages on earthquakes magnitude 3.3 and larger are automatically generated and linked to the PNSN web-site. These preliminary messages are rapidly followed by final processing and update of the RACE systems, faxes, e-mail, and web-site, within 20 minutes to an hour.

### **Public Information and Outreach**

Summary lists for all earthquakes located by the PNSN since 1969 are available via anonymous ftp on **ftp.geophys.washington.edu** in the *pub/seis\_net* subdirectory. This information is also available via the PNSN **World-Wide-Web(WWW)** site.

#### http://www.geophys.washington.edu/SEIS/PNSN/

Our web-server contains text about earthquakes in the Pacific Northwest, maps of stations, catalogs and maps of recent earthquake activity, and maps and text about recent interesting sequences. It also contains links into other sources of earthquake information around the country and world.

The PNSN has an educational outreach program to better inform the public, policy makers, and emergency managers about seismicity and natural hazards. We provide information sheets, lab tours, workshops, and media interviews, and have an audio library with several tapes. We organize and participate in special events in addition to our normal background of informational work; including several thousand calls per quarter to our audio library; tours of the PNSN lab by hundreds of students, teachers, and parents; and outreach talks to numerous groups of all types.

This year was a another very busy one for the PNSN!

• The M 6.8 Nisqually earthquake on February 28th was followed by intense national media attention, with a high demand for interviews and information. FEMA funding was obtained for The Nisqually Earthquake Clearinghouse (hosted by the PNSN) to collect and organize data related to the earthquake. The Clearinghouse operated through the end of September.

- High demand for public information continued as additional western Washington Benioff zone earthquakes (M 5.0 and M 4.3) occurred in June and July, and a swarm of small earthquakes, in sporadic bursts from June through December, were fell by many in downtown Spokane.
- PNSN staff met with numerous state and county officials, representatives of utility and private companies, and engineering and emergency management groups regarding rapid earthquake notification and long-term network and strong-motion development plans. The PNSN installed a RACE System at the WSDOT Seattle Operations Center.
- Many presentations were given; to professional groups such as the Washington State Emergency Managers Association (WSEMA), the Western States Seismic Policy Council (WSSPC), the Contingency Planners And Recovery Managers (CPARM), the Western Washington Emergency Network conference, the Oregon Seismic Safety Policy Advisory Committee, and the the Washington Seismic Safety Committee; and to general audiences at functions including Disaster Saturday, the Burke Museum, the Olympic Peninsula Intertribal Cultural Advisory Committee, the Association of Geo-science Educators, the Seattle Middle Schools Science Fair.
- The PNSN hosted meetings of the ANSS Technical Integration Committee (see report at http://www.anss.org/ticplan/) and the ANNS Pacific Northwest Region Siting Advisory Committee Meeting (see http://www.ess.washington.edu/SEIS/ANSS/), as well as several meetings of Cascadia Regional Earthquake Workgroup (CREW) subcommittees.
- PNSN representatives participated in national level ANSS committees and activities throughout the year, and attended a wide variety of other meetings related to earthquake hazards, preparedness, and related information and outreach.
- The PNSN was especially well represented at the April meeting of the Seismological Society of America, with individual or shared authorship of numerous posters and presentations.
- Tony Qamar, Washington State Seismologist, has been appointed to the newly reconstituted Seismic Safety Committee of the Washington State Emergency Management Council. Dr. Qamar has been appointed chairman of the Information and Technology Subcommittee.

### ACKNOWLEDGMENTS

Seismic stations, telemetry links, and data acquisition equipment were maintained by Jim Ramey and Allen Strelow at the UW, Patrick McChesney (stationed at CVO in Vancouver, Washington), Pat Ryan (of the University of Oregon in Eugene, Oregon), and Don Hartshorn (of Pacific Northwest National Labs in Richland, WA). Bill Steele provided information to the public, while Amy Wright handled routine data analysis and archiving of digital trace data in UW2 format. George Thomas, Amy Lindemuth, Lynn Hult-grien and Sue Sweet worked on strong motion instrumentation and software. Ruth Ludwin wrote reports, maintained the PNSN web-pages, and handled administrative tasks. The University of Oregon (UO) installed and maintained stations and telemetry links in central Oregon, and operated an earthworm node to transmit data to the University of Washington.

## **APPENDIX 1**

PNSN Quarterly Reports 01-A, 01-B, 01-C, and 01-D

### **APPENDIX 3**

Reprint of: Preliminary Report on the Mw=6.8 Nisqually, Washington Earthquake of 28, February 2001 2001, SRL V. 72, N. 3, pp. 352-361.

## **APPENDIX 1**

PNSN Quarterly Reports 01-A, 01-B, 01-C, and 01-D

### QUARTERLY NETWORK REPORT 2001-A on Seismicity of Washington and Oregon

January 1 through March 31, 2001

### Pacific Northwest Seismograph Network Geophysics Program Box 351650 University of Washington Seattle, Washington 98195-1650

This report is prepared as a preliminary description of the seismic activity in Washington State and Oregon. Information contained in this report should be considered preliminary, and not cited for publication without checking directly with network staff. The views and conclusions contained in this document should not be interpreted as necessarily representing the official policies, either express or implied, of the U.S. Government.

Seismograph network operation in Washington and Oregon is supported by the following contracts:

### U.S. Geological Survey Joint Operating Agreement 01-HQ-AG-0011

and

Pacific Northwest National Laboratory, operated by Battelle for the U.S. Dept. of Energy Contract 259116-A-B3

# CONTENTS

| Introduction                                          | 2  |
|-------------------------------------------------------|----|
| Network Operations                                    | 2  |
| Data Recording and EARTHWORM Update                   | 2  |
| Strong Motion Instrument Update                       |    |
| CREST Instrument Update                               | 5  |
| Stations used for locations                           |    |
| Outreach Activities                                   | 8  |
| Earthquake Data                                       | 11 |
| Oregon Seismicity                                     | 17 |
| Western Washington Seismicity                         | 17 |
| Nisqually Earthquake                                  | 17 |
| Cascade Volcanos                                      |    |
| Mount Rainier Area                                    | 19 |
| Mount St. Helens Area                                 |    |
| Eastern Washington Seismicity                         | 20 |
| Further Information                                   | 21 |
| Key to Earthquake and Blast Catalog                   |    |
| Earthquake and Blast Catalog, Events M 2.0 or larger2 | 23 |

# **FIGURES**

| 1. | Map of seismometer stations operating in 2001 1st quarter                    | 3   |
|----|------------------------------------------------------------------------------|-----|
|    | . Map of Puget Sound area seismometer stations operating in 2001 1st quarter |     |
| 2. | Map showing selected epicenters for 2001 1st quarter                         | .13 |
| 3. | Map showing blasts and probable blasts for 2001 1st quarter                  | .14 |
| 4. | Map showing Mt. Rainier epicenters for 2001 1st quarter                      | 15  |
| 5. | Map showing Mt. St. Helens epicenters for 2001 1st quarter                   | 15  |
| 6. | Map showing fault-plane solutions for events >2.5 magnitude                  | 16  |

# TABLES

| 1. Station outages for 1st quarter 2001                             | 5   |
|---------------------------------------------------------------------|-----|
| 2A. Short-period Stations operating at end of 1st quarter 2001      | 5   |
| 2B. Broad-band Stations operating at end of 1st quarter 2001        | 7   |
| 2C. Strong-motion Stations; operating at end of 1st quarter 2001    | 8   |
| 2D. Stations recorded at PNSN, originating from other organizations | 9   |
| 3A. Felt earthquakes                                                | .12 |
| 3B. Earthquakes M 2.5. Focal mechanisms indicated, if computed      | .12 |
| 3C. Nisqually earthquake and aftershocks                            | .12 |
| 4. Comparison of earthquake counts over several years               | .20 |
| 5. Catalog of earthquakes and blasts for 1st quarter 2001           | .23 |
| 6. Nisqually Earthquake: Peak Ground Accelerations and Velocities   | .24 |

### **INTRODUCTION**

This is the first quarterly report of 2001 from the University of Washington Geophysics Program Pacific Northwest Seismograph Network (PNSN), covering seismicity of Washington and western Oregon.

Comprehensive quarterlies have been produced by the PNSN since the beginning of 1984. Prior to that we published quarterly reports for western Washington in 1983 and for eastern Washington from 1975 to 1983. Annual technical reports covering seismicity in Washington since 1969 are available from the U.W. Geophysics Program. Beginning in 1999, the quarterly PNSN catalog listing changed; earthquakes smaller than magnitude 2.0 are no longer listed in the quarterly reports. The complete PNSN catalog is available on-line, both through our web-site and through the CNSS catalog. We will continue to provide special coverage (figures, counts, listings, etc.) of earthquake swarms, aftershock sequences, etc.

This quarterly report discusses network operations, seismicity of the region, unusual events or findings, and our educational and outreach activities. This report is preliminary, and subject to revision. The PNSN routinely records signals from selected stations in adjoining networks. This improves our ability to locate earthquakes at the edges of our network. However, our earthquake locations may be revised if new data become available, such as P and S readings from Canadian seismograph stations. Findings mentioned in these quarterly reports should not be cited for publication.

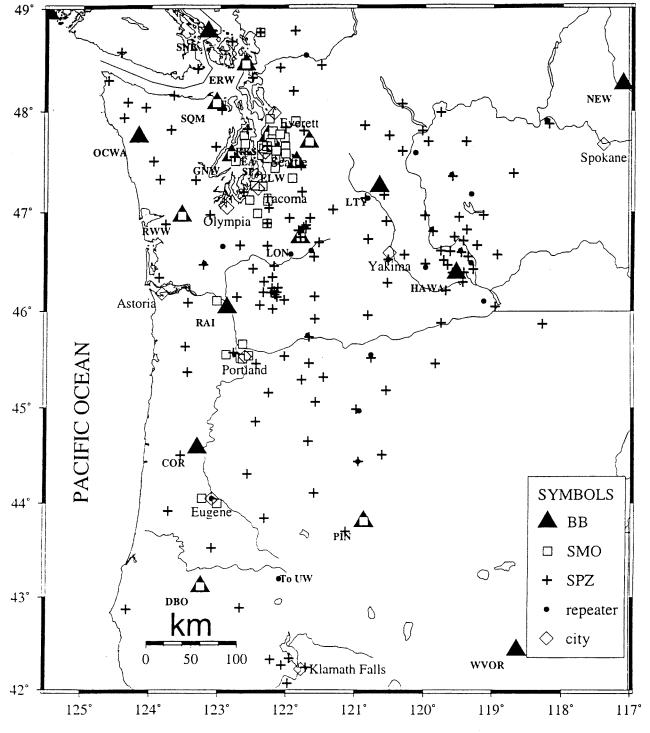
### NETWORK OPERATIONS

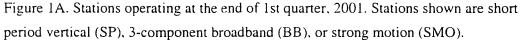
Figure 1a shows a map view of stations operating during the quarter. Figure 1b is a more detailed view of stations in the Puget Sound area. Table 1 gives approximate periods of time when individual stations were inoperable. Data for Table 1 are compiled from weekly plots of network-wide teleseismic arrivals and automated digital signal checks, plus records of maintenance and repair visits.

### Data Recording and EARTHWORM Update

At the end of 2000, a full EARTHWORM configuration was implemented on the computer scossa. This quarter, scossa became our main EARTHWORM machine, with milli serving as our primary backup and verme as the secondary backup. Milli and verme still serve as the principal computers for data acquisition for many of the digital stations. We are currently running EARTHWORM-V5.1.

The SUNWORM digitizer for our backup system began to have problems, so we requested an official EARTHWORM digitizer from the central EARTHWORM team. Equipment arrived at the end of the quarter, but it will take some effort to develop the wiring configuration to get it installed as part of our main system.


In mid-February a new earthquake magnitude calculator, *localmag*, was implemented as part of our routine earthworm system. It had been tested by its developer, Pete Lombard, using previously recorded PNSN data but calibration had not been completed, and PNSN staff had only very brief training and minimal experience with *localmag* when the Nisqually earthquake occurred on Feb. 28. The initial magnitude estimates from *localmag* were available less than 15 minutes after the earthquake, and were very close to the final magnitude of 6.8. We have implemented *localmag* routinely on our system, and continue to gather information on how it performs over a wider magnitude range.


During January and early February, Steve Malone gave a 6-week class on the PNSN EARTHWORM implementation. This class brought PNSN staff up-to-date on most of the critical features of our data acquisition system, and improved our ability to deal with operational problems.

#### Strong Motion Instrumentation and Recording Update

Three new strong-motion stations were installed in the first quarter of 2001. The first was BEVT, a new ANSS (Advanced National Seismic System) station at Boeing-Everett. The other two stations, ALVY and LANE, are new USGS strong motion stations at BPA (Bonneville Power Administration) substations in Eugene, OR.

The ANSS Advisory Committee met on February 21, 2001. George Thomas, Steve Malone, and Bill Steele attended the meeting, the purpose of which was to initiate activities of the Advisory Committee and assist with the development of the ANSS in the Pacific Northwest.





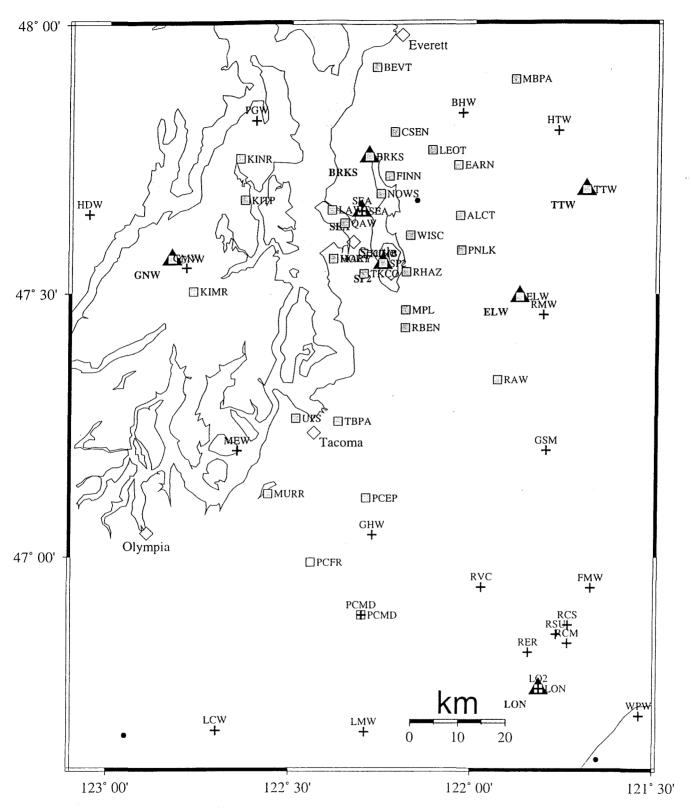



Figure 1B. Stations operating at the end of 1st quarter, 2001. Detail of Figure 1A.

- 4 -

The USGS has authorized funding for the installation of 20 additional ANSS strong motion instruments in the greater Puget Sound Region in calendar year 2001. The siting process for these new instruments was halfway finished by the end of the first quarter.

In the first quarter of 2001, we successfully implemented *ShakeMap*, a map displaying ground shaking produced by an earthquake based on surface geology and data from the strong motion instruments. A *ShakeMap* was made within an hour of a magnitude 3.1 felt earthquake on February 14th and also within a few hours of the magnitude 6.8 Nisqually earthquake.

### **CREST Instrument Update**

CREST (Consolidated Reporting of EarthquakeS and Tsunamis) stations are planned for Eugene Oregon (through UO), and for Longview, Boistfort Peak, Forks, and Tolt Reservoir in Washington. Four additional sites directly on the coast with BPA telemetry have been identified, and permitting discussions are underway.

| Stati   | TABLE 1           Station Outages, Repairs, and Installations 1st quarter 2001 |                                                       |  |  |  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|--|--|
| Station | Outage Dates                                                                   | Comments                                              |  |  |  |  |  |  |  |  |
| ALVY    | 1/17/01                                                                        | Installed (SMO)                                       |  |  |  |  |  |  |  |  |
| BBO     | 2/1/01-3/7/01                                                                  | Receiver box knocked over, repaired burned wires      |  |  |  |  |  |  |  |  |
| BEVT    | 2/21/01                                                                        | Installed (SMO)                                       |  |  |  |  |  |  |  |  |
| GLK     | 3/1/01-3/14/01                                                                 | Phone off                                             |  |  |  |  |  |  |  |  |
| KOS     | 2/1/01-3/14/01                                                                 | Dead - batteries were replaced                        |  |  |  |  |  |  |  |  |
| LANE    | 1/17/01                                                                        | Installed (SMO)                                       |  |  |  |  |  |  |  |  |
| LMW     | 2/28/01-End                                                                    | Dead                                                  |  |  |  |  |  |  |  |  |
| RSU     | 9/30/00-End                                                                    | Dead                                                  |  |  |  |  |  |  |  |  |
| SLF     | 12/1/00-3/1/01                                                                 | Back on with warmer weather                           |  |  |  |  |  |  |  |  |
| тко     | 1/4/99-End                                                                     | REMOVED                                               |  |  |  |  |  |  |  |  |
| TTW     | 1/1/00-End                                                                     | Bad GPS antenna after switching to ethernet telemetry |  |  |  |  |  |  |  |  |
| TWW     | 12/1/00-End                                                                    | Bad time                                              |  |  |  |  |  |  |  |  |
| VRC     | 10/1/00-End                                                                    | Dead/VCO was shot with a gun, pulled out 11/2         |  |  |  |  |  |  |  |  |
| VSP     | 1/1/01-1/10/01                                                                 | Solar cells iced over, replaced batteries             |  |  |  |  |  |  |  |  |
| WPW     | 3/1/01-3/14/01                                                                 | Phone off                                             |  |  |  |  |  |  |  |  |
|         |                                                                                |                                                       |  |  |  |  |  |  |  |  |

### STATIONS USED FOR LOCATION OF EVENTS

Table 2A lists short-period, mostly vertical-component stations used in locating seismic events in Washington and Oregon. The first column in the table gives the 3-letter station designator, followed by a symbol designating the funding agency; stations marked by a percent sign (%) were supported by USGS joint operating agreement 01-HQ-AG-0011. A plus (+) indicates support under Pacific Northwest National Laboratory, Battelle contract 259116-A-B3. Stations designated "#" are USGS-maintained stations recorded at the PNSN. Other stations were supported from other sources. Additional columns give station north latitude and west longitude (in degrees, minutes and seconds), station elevation in km, and comments indicating landmarks for which stations were named.

| TABLE | 2A - Short- | period Station | ns operated by | the PNSN | during the first quarter 2001 |
|-------|-------------|----------------|----------------|----------|-------------------------------|
| STA   | F           | LAT            | LONG           | EL       | NAME                          |
| ASR   | %           | 46 09 09.9     | 121 36 01.6    | 1.357    | Mt. Adams - Stagman Ridge     |
| AUG   | %           | 45 44 10.0     | 121 40 50.0    | 0.865    | Augspurger Mm                 |
| BBO   | %           | 42 53 12.6     | 122 40 46.6    | 1.671    | Butler Butte, Oregon          |
| BHW   | %           | 47 50 12.6     | 122 01 55.8    | 0.198    | Bald Hill                     |
| BLN   | %           | 48 00 26.5     | 122 58 18.6    | 0.585    | Blyn Mt.                      |
| BOW   | %           | 46 28 30.0     | 123 13 41.0    | 0.870    | Boistfort Mt.                 |
| BPO   | %           | 44 39 06.9     | 121 41 19.2    | 1.957    | Bald Peter, Oregon            |
| BRV   | +           | 46 29 07.2     | 119 59 28.2    | 0.920    | Black Rock Valley             |
| BVW   | +           | 46 48 39.5     | 119 52 56.4    | 0.670    | Beverly                       |
| CBS   | +           | 47 48 17.4     | 120 02 30.0    | 1.067    | Chelan Butte, South           |
| CDF   | %           | 46 07 01 4     | 122 02 42.1    | 0.756    | Cedar Flats                   |
| CMM   | %           | 46 26 07.0     | 122 30 21.0    | 0.620    | Crazy Man Mt.                 |
| CMW   | %           | 48 25 25.3     | 122 07 08.4    | 1.190    | Cultus Mtns.                  |
| CPW   | %           | 46 58 25.8     | 123 08 10.8    | 0.792    | Capitol Peak                  |
| CRF   | +           | 46 49 30.0     | 119 23 13.2    | 0.189    | Corfu                         |
| DPW   | +           | 47 52 14.3     | 118 12 10.2    | 0.892    | Davenport                     |
| DY2   | +           | 47 59 06.6     | 119 46 16.8    | 0.890    | Dyer Hill 2                   |
| EDM   | %           | 46 11 50 4     | 122 09 00.0    | 1.609    | East Dome, Mt. St. Helens     |
| ELK   | %           | 46 18 20.0     | 122 20 27.0    | 1.270    | Elk Rock                      |
| ELL   | +           | 46 54 34.8     | 120 33 58.8    | 0.789    | Ellensburg                    |
| EPH   | +           | 47 21 22.8     | 119 35 45.6    | 0.661    | Ephrata                       |
| ET3   | +           | 46 34 38.4     | 118 56 15.0    | 0.286    | Eltopia (replaces ET2)        |
| ETW   | +           | 47 36 15.6     | 120 19 56.4    | 1.477    | Entiat                        |

TABLE 2A continued

|            |                                        |                          | TABLE 2A cont              | mueu           |                                     |
|------------|----------------------------------------|--------------------------|----------------------------|----------------|-------------------------------------|
| STA        | F                                      | LAT                      | LONG                       | EL             | NAME                                |
|            |                                        | 44 18 35.6               | 122 34 40.2                | 1.080          | Farmers Butte, Oregon               |
| FBO        | 70                                     | 46 57 06.9               | 119 29 49.0                | 0.455          | Frenchman Hills East                |
| FHE        | %                                      | 46 11 47.0               | 122 21 01.0                | 1.378          | Flat Top 2                          |
| FL2<br>FMW | -70<br>%                               | 46 56 29.6               | 121 40 11.3                | 1.859          | Mt. Fremont                         |
| GBL        | ≁                                      | 46 35 54.0               | 119 27 35.4                | 0.330          | Gable Mountain                      |
| GHW        | +<br>%                                 | 47 02 30.0               | 122 16 21.0                | 0.268          | Garrison Hill                       |
| GL2        | +                                      | 45 57 35.0               | 120 49 22.5                | 1.000          | New Goldendale                      |
| GLK        | %                                      | 46 33 27.6               | 121 36 34.3                | 1.305          | Glacier Lake                        |
| GMO        | %                                      | 44 26 20.8               | 120 57 22.3                | 1.689          | Grizzly Mountain, Oregon            |
| GMW        | %                                      | 47 32 52.5               | 122 47 10.8                | 0.506          | Gold Mt.                            |
| GSM        | %                                      | 47 12 11.4               | 121 47 40.2                | 1.305          | Grass Mt.                           |
| GUL        | %                                      | 45 55 27.0               | 121 35 44.0                | 1.189          | Guler Mt.                           |
| HAM        | %                                      | 42 04 08.3               | 121 58 16.0                | 1.999          | Hamaker Mt., Oregon                 |
| НВО        | %                                      | 43 50 39.5               | 122 19 11.9                | 1.615          | Huckleberry Mt., Oregon             |
| HDW        | %                                      | 47 38 54.6               | 123 03 15.2                | 1.006          | Hoodsport                           |
| HOG        | %                                      | 42 14 32.7               | 121 42 20.5                | 1.887          | Hogback Mtn., Oregon                |
| HSO        | %                                      | 43 31 33.0               | 123 05 24.0                | 1.020          | Harness Mountain. Oregon            |
| HSR        | %                                      | 46 10 28.0               | 122 10 46.0                | 1.720          | South Ridge, Mt. St. Helens         |
| HTW        | %                                      | 47 48 14.2               | 121 46 03.5                | 0.833          | Haystack Lookout                    |
| JBO        | +                                      | 45 27 41.7               | 119 50 13.3                | 0.645          | Jordan Butte, Oregon                |
| JCW        | %                                      | 48 11 42.7               | 121 55 31.1                | 0.792          | Jim Creek                           |
| JUN        | %                                      | 46 08 50.0               | 122 09 04.4                | 1.049          | June Lake                           |
| КМО        | %                                      | 45 38 07.8               | 123 29 22.2                | 0.975          | Kings Mt., Oregon                   |
| KOS        | %                                      | 46 27 46.7               | 122 11 41.3                | 0.610          | Kosmos                              |
| LAB        | %                                      | 42 16 03.3               | 122 03 48.7                | 1.774          | Little Aspen Butte. Oregon          |
| LCW        | %                                      | 46 40 14.4               | 122 42 02.8                | 0.396          | Lucas Creek                         |
| LMW        | %                                      | 46 40 04.8               | 122 17 28.8                | 1.195 .        | Ladd Mt.                            |
| LNO        | +                                      | 45 52 18.6               | 118 17 06.6                | 0.771          | Lincton Mt., Oregon                 |
| LO2        | %                                      | 46 45 00.0               | 121 48 36.0                | 0.853          | Longmire                            |
| LOC        | +                                      | 46 43 01.2               | 119 25 51.0                | 0.210          | Locke Island                        |
| LVP        | ~ %                                    | 46 04 06.0               | 122 24 30.0                | 1.170          | Lakeview Peak                       |
| MBW        | %                                      | 48 47 02.4               | 121 53 58.8                | 1.676          | Mt. Baker                           |
| MCW        | %                                      | 48 40 46.8               | 122 49 56.4                | 0.693          | Mt. Constitution                    |
| MDW        | +                                      | 46 36 47.4               | 119 45 39.6                | 0.330          | Midway                              |
| MEW        | %                                      | 47 12 07.0               | 122 38 45.0                | 0.097          | McNeil Island                       |
| MJ2        | +                                      | 46 33 27.0               | 119 21 32.4                | 0.146          | May Junction 2                      |
| MOX        | +                                      | 46 34 38.4               | 120 17 53.4                | 0.501          | Moxie City                          |
| MPO        | %                                      | 44 30 17.4               | 123 33 00.6                | 1.249          | Mary's Peak, Oregon                 |
| MTM        | %                                      | 46 01 31.8               | 122 12 42.0                | 1.121          | Mt. Mitchell                        |
| NAC        | +                                      | 46 43 59.4               | 120 49 25.2                | 0.728          | Naches                              |
| NCO        | $7_{c}$                                | 43 42 14.4               | 121 08 18.0                | 1.908          | Newberry Crater, Oregon             |
| NEL        | +                                      | 48 04 12.6               | 120 20 24.6                | 1.500<br>0.826 | Nelson Butte<br>Nicolai Mt., Oregon |
| NLO        | %                                      | 46 05 21.9               | 123 27 01.8                | 0.938          | Olympics - Bonidu Creek             |
| OBC        | %                                      | 48 02 07.1<br>47 19 34.5 | 124 04 39.0<br>123 51 57.0 | 0.383          | Olympics - Burnt Hill               |
| OBH        | С.<br>К                                | 48 17 53.5               | 123 31 37.0                | 0.487          | Olympics - Cheeka Peak              |
| OCP        |                                        | 47 23 15.6               | 118 42 34.8                | 0.553          | Odessa site 2                       |
| OD2        | +<br>%                                 | 47 56 00.0               | 124 23 41.0                | 0.152          | Olympics - Forest Resource Cen      |
| OFR<br>OHW | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 48 19 24.0               | 122 31 54.6                | 0.054          | Oak Harbor                          |
| ON2        | 70<br>%                                | 46 52 50.8               | 123 46 51.8                | 0.257          | Olympics - North River              |
| 00W        | <i>%</i>                               | 40 52 50.0               | 124 11 10.2                | 0.561          | Octopus West                        |
| OSD        |                                        | 47 48 59.2               | 123 42 13.7                | 2.008          | Olympics - Snow Dome                |
| OSR        | %                                      | 47 30 20.3               | 123 57 42.0                | 0.815          | Olympics Salmon Ridge               |
| OT3        | +                                      | 46 40 08.4               | 119 13 58.8                | 0.322          | New Othello (replaces OT2 8/26      |
| OTR        | %                                      | 48 05 00.0               | 124 20 39.0                | 0.712          | Olympics - Tyee Ridge               |
| PAT        | +                                      | 45 52 55.2               | 119 45 08.4                | 0.262          | Paterson                            |
| PCMD       | %                                      | 46 53 20.9               | 122 18 00.9                | 0.239          | PC Mountain Detachment              |
| PGO        | %<br>%                                 | 45 27 42.6               | 122 27 11.5                | 0.253          | Gresham. Oregon                     |
| PGW        | %                                      | 47 49 18.8               | 122 35 57.7                | 0.122          | Port Gamble                         |
| PRO        | +                                      | 46 12 45.6               | 119 41 08.4                | 0.553          | Prosser                             |
| RCM        | 70                                     | 46 50 08.9               | 121 43 54.4                | 3.085          | Mt. Rainier, Camp Muir              |
| RCS        | %                                      | 46 52 15.6               | 121 43 52.0                | 2.877          | Mt. Rainier. Camp Schurman          |
| RER        | %                                      | 46 49 09.2               | 121 50 27.3                | 1.756          | Mt. Rainier, Emerald Ridge          |
| RMW        | 7 <sub>0</sub>                         | 47 27 35.0               | 121 48 19.2                | 1.024          | Rattlesnake Mt. (West)              |
| RNO        | %                                      | 43 54 58.9               | 123 43 25.5                | 0.850          | Roman Nose, Oregon                  |
| RPW        | $\tilde{\gamma}_c$                     | 48 26 54.0               | 121 30 49.0                | 0.850          | Rockport                            |
| RSU        | che                                    | 46 51 12.0               | 121 45 47.0                | 4.440          | Rainier summit                      |
| RSW        | +                                      | 46 23 40.2               | 119 35 28.8                | 1.045          | Rattlesnake Mt. (East)              |
| RVC        | %                                      | 46 56 34.5               | 121 58 17.3                | 1.000          | Mt. Rainier - Voight Creek          |
| RVN        | Te.                                    | 47 01 38.6               | 121 20 11.9                | 1.885          | Raven Roost (former NEHRP temp      |
| RVW        | che                                    | 46 08 53.2               | 122 44 32.1                | 0.460          | Rose Valley                         |
| SAW        | +                                      | 47 42 06.0               | 119 24 01.8                | 0.701          | St. Andrews                         |
| SBES       | $G_{c}$                                | 48 46 05.9               | 122 24 54.2                | 0.000          | Silver Beach ES                     |
| SEA        | C <sub>C</sub>                         | 47 39 15.8               | 122 18 29.3                | 0.030          | UW. Seattle (Wood Anderson.BB.      |
| SEP        | #                                      | 46 12 00.7               | 122 11 28.1                | 2.116          | September lobe, Mt. St. Helens      |
| SHW        | 7c                                     | 46 11 37.1               | 122 14 06.5                | 1.425          | Mt. St. Helens                      |
|            |                                        |                          |                            |                |                                     |

|     |          |            | TABLE 2A con | unuea |                              |
|-----|----------|------------|--------------|-------|------------------------------|
| STA | F        | LAT        | LONG         | EL    | NAME                         |
| SLF | %        | 47 45 32.0 | 120 31 40.0  | 1.750 | Sugar Loaf                   |
| SMW | %        | 47 19 10.7 | 123 20 35.4  | 0.877 | South Mtn.                   |
| SOS | %        | 46 14 38.5 | 122 08 12.0  | 1.270 | Source of Smith Creek        |
| SSO | %        | 44 51 21.6 | 122 27 37.8  | 1.242 | Sweet Springs, Oregon        |
| STD | %        | 46 14 16.0 | 122 13 21.9  | 1.268 | Studebaker Ridge             |
| STW | %        | 48 09 03.1 | 123 40 11.1  | 0.308 | Striped Peak                 |
| TBM | +        | 47 10 12.0 | 120 35 52.8  | 1.006 | Table Mt.                    |
| TCO | %        | 44 06 27.6 | 121 36 02.1  | 1.975 | Three Creek Meadows, Oregon. |
| TDH | %        | 45 17 23.4 | 121 47 25.2  | 1.541 | Tom.Dick.Harry Mt., Oregon   |
| TDL | %        | 46 21 03.0 | 122 12 57.0  | 1.400 | Tradedollar Lake             |
| тко | %        | 45 22 16.7 | 123 27 14.0  | 1.024 | Trask Mtn. Oregon            |
| TRW | +        | 46 17 32.0 | 120 32 31.0  | 0.723 | Toppenish Ridge              |
| TWW | +        | 47 08 17.4 | 120 52 06.0  | 1.027 | Teanaway                     |
| VBE | %        | 45 03 37.2 | 121 35 12.6  | 1.544 | Beaver Butte, Oregon         |
| VCR | %        | 44 58 58.2 | 120 59 47.4  | 1.015 | Criterion Ridge, Oregon      |
| VFP | %        | 45 19 05.0 | 121 27 54.3  | 1.716 | Flag Point, Oregon           |
| VG2 | %        | 45 09 20.0 | 122 16 15.0  | 0.823 | Goat Mt., Oregon             |
| VGB | +        | 45 30 56.4 | 120 46 39.0  | 0.729 | Gordon Butte, Oregon         |
| VIP | %        | 44 30 29.4 | 120 37 07.8  | 1.731 | Ingram Pt., Oregon           |
| VLL | %        | 45 27 48.0 | 121 40 45.0  | 1.195 | Laurance Lk., Oregon         |
| VLM | %        | 45 32 18.6 | 122 02 21.0  | 1.150 | Little Larch, Oregon         |
| VRC | %        | 42 19 47.2 | 122 13 34.9  | 1.682 | Rainbow Creek, Öregon        |
| VSP | %        | 42 20 30.0 | 121 57 00.0  | 1.539 | Spence Mtn. Oregon           |
| VT2 | +        | 46 58 02.4 | 119 59 57.0  | 1.270 | Vantage2                     |
| VTH | %        | 45 10 52.2 | 120 33 40.8  | 0.773 | The Trough, Oregon           |
| WA2 | +        | 46 45 19.2 | 119 33 56.4  | 0.244 | Wahluke Slope                |
| WAT | +        | 47 41 55.2 | 119 57 14.4  | 0.821 | Waterville                   |
| WG4 | +        | 46 01 49.2 | 118 51 21.0  | 0.511 | Wallula Gap                  |
| WIB | %        | 46 20 34.8 | 123 52 30.6  | 0.503 | Willapa Bay                  |
| WIW | +        | 46 25 45.6 | 119 17 15.6  | 0.128 | Wooded Island                |
| WPO | <i>%</i> | 45 34 24.0 | 122 47 22.4  | 0.334 | West Portland, Oregon        |
| WPW | %        | 46 41 55.7 | 121 32 10.1  | 1.280 | White Pass                   |
| WRD | +        | 46 58 12.0 | 119 08 41.4  | 0.375 | Warden                       |
| WRW | %        | 47 51 26.0 | 120 52 52.0  | 1.189 | Wenatchee Ridge              |
| YA2 | +        | 46 31 36.0 | 120 31 48.0  | 0.652 | Yakima                       |
| YEL | #        | 46 12 35.0 | 122 11 16.0  | 1.750 | Yellow Rock, Mt. St. Helens  |

TABLE 2A continued

Table 2B lists broad-band, three-component stations operating in Washington and Oregon that provide data to the PNSN.

|           |                                                                                                                |                   | TABL                | E 2B          |                                                   |
|-----------|----------------------------------------------------------------------------------------------------------------|-------------------|---------------------|---------------|---------------------------------------------------|
| Broad-ban | d three-comp                                                                                                   | onent stations of | perating at the end | d of the firs | t quarter 2001. Symbols are as in Table 2A.       |
| STA       | F                                                                                                              | LAT               | LONG                | EL            | NAME                                              |
| COR       | a segure de la constante de la | 44 35 08.5        | 123 18 11.5         | 0.121         | Corvallis, Oregon (IRIS station, Operated by OSU) |
| DBO       | %                                                                                                              | 43 07 09.0        | 123 14 34.0         | 0.984         | Dodson Butte, Oregon (CREST - operated by UO)     |
| ELW       | %                                                                                                              | 47 29 38.8        | 121 52 21.6         | 0.267         | Echo Lake. WA (operated by UW)                    |
| ERW       | Gr Chr                                                                                                         | 48 27 14.4        | 122 37 30.2         | 0.389         | Mt. Erie, WA (operated by UW)                     |
| GNW       | %                                                                                                              | 47 33 51.8        | 122 49 31.0         | 0.165         | Green Mountain, WA (CREST - operated by UW)       |
| HAWA      |                                                                                                                | 46 23 32.3        | 119 31 57.2         | 0.367         | Hanford Nike (USGS-USNSN)                         |
| HLID      |                                                                                                                | 43 33 45.0        | 114 24 49.3         | 1.772         | Hailey, ID (USGS-USNSN)                           |
| LON       | 50                                                                                                             | 46 45 00.0        | 121 48 36.0         | 0.853         | Longmire (CREST - operated by UW)                 |
| LTY       | %                                                                                                              | 47 15 21.2        | 120 39 53.3         | 0.970         | Liberty, WA (operated by UW)                      |
| NEW       |                                                                                                                | 48 15 50.0        | 117 07 13 0         | 0.760         | Newport Observatory (USGS-USNSN)                  |
| OCWA      |                                                                                                                | 47 44 56.0        | 124 10 41.2         | 0.671         | Octopus Mtn. (USGS-USNSN)                         |
| PIN       |                                                                                                                | 43 48 40.0        | 120 52 19.0         | 1.865         | Pine Mt. Oregon (CREST - operated by UO)          |
| RAI       |                                                                                                                | 46 02 25.1        | 122 53 06.4         | 1.520         | Trojan Plant, Oregon (OSU)                        |
| RWW       | %                                                                                                              | 46 57 50.1        | 123 32 35.9         | 0.015         | Ranney Well (CREST - operated by UW)              |
| SP2       | %                                                                                                              | 47 33 23.3        | 122 14 52.8         | 0.030         | Seward Park. Seattle (operated by UW)             |
| SQM       | %                                                                                                              | 48 04 39.0        | 123 02 44.0         | 0.030         | Sequim (operated by UW, telemetered by Battelle)  |
| TÌW       | %                                                                                                              | 47 41 40.7        | 121 41 20.0         | 0.542         | Tolt Reservoir, WA (operated by UW)               |
| WVOR      |                                                                                                                | 42 26 02.0        | 118 38 13.0         | 1.344         | Wildhorse Valley, Oregon (USGS-USNSN)             |

Table 2C lists strong-motion, three-component stations operating in Washington and Oregon that provide data in real or near-real time to the PNSN. Several of these stations also have broad-band instruments, as noted. The "SENSOR" field designates what type of seismic sensor is used;

• A = Terra-Tech SSA-320 SLN triaxial accelerometer/Terra-Tech IDS24 recording system,

- A20 = Terra-Tech SSA-320 triaxial accelerometer/Terra-Tech IDS20 recording system,
- FBA23 = Kinemetrics FBA23 accelerometers and Reftek recording system,

• EPI = Kinemetrics Episensor accelerometers and Reftek recording system.

• BB = Guralp CMG-40T 3-D broadband velocity sensor.

• BB3 = Guralp CMG3T 3-D broadband velocity sensor.

• BBZ = Broad Band sensor, PMD 2024, vertical component only.

• K2 = Kinemetrics Episensor accelerometers and K2 Recording System

The "TELEMETRY" field indicates the type of telemetry used to recover the data.

• D = dial-up,

• L = continuously telemetered via dedicated lease-line telephone lines,

• L-PPP = continuously telemetered via dedicated lease-line telephone lines using PPP protocol

• I = continuously telemetered via Internet,

• E =continuously telemetered via Internet from a remote EARTHWORM system

### **TABLE 2C**

Strong-motion three-component stations operating at the end of the first quarter 2001. Symbols are as in Table 2A.

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STA  | F | LAT        | LONG        | EL    | NAME                                   | SENSORS | TELEMETRY |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|------------|-------------|-------|----------------------------------------|---------|-----------|
| ALST%4663121230147.40.000Akton, Oregon BPAA20L.E.DALVY%47.5511.91221611.9Boeing Everett PlantK2LBKS%47.4511.91221611.9Brookside Elementary, Lake Forest ParkK2.BZZ1CSD%47.450.1012212215.00.055Crystal Springs Elementary, BothellK21CSO#45.30.012314.340.984Dodson Butte, OR (UO CREST)EPI.BB3E.L.PPPEARN%47.421230.230.010East Ridge Elementary, WoodinvilleK21ELW%47.421230.230.010Finh Hill Jr High, JuanitaK21ERW%47.430.8911.213.500.010Finn Hill Jr High, JuanitaK21FINN%47.430.33.112.29.20.100.106Holy RosaryK21HOLY%47.330.012.253.00.000Kitsap Moderate Risk WasteK21KIMB%47.330.012.253.00.000Kitsap Treatment PlantK21LOY%47.330.012.253.00.000Kitsap Moderate Risk WasteK21KIMB%47.330.012.274.700.000Kitsap Treatment PlantK21 <t< td=""><td>ALCT</td><td></td><td>47 38 51.0</td><td>122 02 13.2</td><td></td><td>Alcott Elementary, Redmond</td><td>K2</td><td>1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALCT |   | 47 38 51.0 | 122 02 13.2 |       | Alcott Elementary, Redmond             | K2      | 1         |
| ALVY%43 59 53.2123 00 57.00.155Alvey Substation. Eugenc. Oregon BPAK2L.EBEVT $\phi$ 47 55 11.9122 16 11.9Boeing Everett PlantK2IBKKS%47 45 19.7122 17 18.40.100Brookside Elementary. Lake Fores ParkK2.BEZICSEN%47 48 04.5122 13 06.50.036Canyon Substation. OregonFBA23DDBO43 07 09.0123 14 34.00.984Docdson Butter. OR (UO CREST)FIB.1833EL.PPPEARN%47 44 24.0122 02 24.00.010East Ridge Elementary. WoodinvilleK2IELW%47 29 38.8123 521.60.267Echo Lake. WAA.BBL.DFINN%47 33 51.8122 35 5.00.010Finn H11 Jr High. JuanitaK2IGNW%47 33 35.1122 39 21.00.166Feren Mountain. WA (CREST)EPI.BB3L-PPPHAO# 45 30 0.0122 31 85.00.100Kitap Notarian. WA (CREST)EPI.BB3L-PPPHAO# 47 30 30.1122 31 80 5.90.100Kitap Notarian. WA (CREST)EPI.BB3L-PPPHAO# 47 30 30.1122 31 80 5.90.100Kitap Notarian. WA (CREST)EPI.BB3L-PPPHAO# 47 30 30.1122 31 80 5.90.100Kitap Notarian. WA (CREST)EPI.BB3L-PPPHAO# 47 30 30.1122 31 42.00.000KeelerKaeIIKEEL% 47 30 40.0122 31 43.0 <t< td=""><td></td><td>%</td><td></td><td></td><td></td><td></td><td></td><td>L.E.D</td></t<>                                                                                                                                                                                                                                                                                                                                                                |      | % |            |             |       |                                        |         | L.E.D     |
| BEVT         %         47 55 11.9         122 16 11.9         Boeing Evertu Plant         K2         I           BRKS         %         47 45 10.7         122 17 18.4         0.000         Brookside Elementary, Lake Forest Park         K2.BBZ         I           CSEN         %         47 48 04.5         122 13 06.5         0.055         Crystal Springs Elementary, Boothell         K2         I           CSO         # 45 31 01.0         122 14 22.5         0.036         Canyon Substation, Oregon         FR         FR         K2         I           EARN         %         47 42 0.122.02 24.0         0.010         East Mide Elementary, Woodinville         K2         I           ELW         %         47 29 38.8         121 52 21.6         0.267         Echo Lake, WA         A.BB         L.D           FINN         %         47 33 0.8         122 13 55.0         0.010         Finn Hill Jr High, Juania         K2         I           GNW         %         47 33 0.1         123 53 44.4         0.000         Kceler, Oregon BPA         A20         L.E.D           HOLY         %         47 33 0.0         122 33 44.4         0.000         Kisap Moderate Risk Waste         K2         I           KIMB         %                                                                                                                                                                 | ALVY | % | 43 59 53.2 | 123 00 57.0 | 0.155 |                                        | K2      |           |
| BRKS $\%$ 47 45 19.7122 17 18.40.100Brookside Elementary, Lake Forest ParkK2.BZ1CSEN#45 31 01.0122 41 22.50.036Canyon Substation. OregonFBA23DDBO#43 07 09.0123 14 34.00.984Dodson Butte. OR (UO CREST)FBA23DEARN#47 44 24.0122 02 24.00.010East Ridge Elementary. WoodinvilleK21ELW#47 29 38.8121 52 21.60.267Echo Lake. WAA.BBL.DFINN#47 30.89122 15 50.00.010Finn Hill Jr High. JuanitaK21GNW#47 33 51.8122 39 24.00.016Harrison Substation. OregonFPIA23DHAO#47 33 51.8122 39 24.00.016Harrison Substation. OregonFPIA23DHAO#45 30.0122 53 62.10.106Holy RosaryK21KIMB%47 34 30.9122 18 05.90.100Kimball Elementary. ScattleK21KIMR%47 34 0.0122 18 05.90.100Kimball Elementary. ScattleK21KIMR%47 34 0.00122 37 47.00.100Kitsap Treatment PlantK21LANE%47 39 0.3122 37 47.00.100Kitsap Treatment PlantK21LANE%47 39 0.6122 38 30.80.010Kitsap Treatment PlantK21LANE%44 4 30.0122 37 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BEVT | % | 47 55 11.9 | 122 16 11.9 |       |                                        | K2      | 1         |
| CSEN         %         47 48 04.5         122 13 06.5         0.055         Crystal Springs Elementary, Bothell         K2         1           CSO         # 45 31 01.0         122 14 22.5         0.036         Canyon Substation. Oregon         FBA23         D           DBO         9         47 42 40         123 02 24.0         0.010         East Ridge Elementary. Woodinville         K2         1           ELW         %         47 79 38.8         121 52 21.6         0.267         Echo Lake, WA         ABB         LD           ERW         %         48 71 43 08.9         122 13 55.0         0.010         Fina Hill Jr High, Juanita         K2         1           GNW         %         47 33 53.8         122 39 24.0         0.016         Fina Mill Jr High, Juanita         K2         1           KEEL         %         47 33 0.0         122 38 02.1         0.016         Kimson Substation. Oregon         FBA23         D           HAC         # 47 33 0.0         122 38 02.1         0.010         Kimsa Moderate Risk Waste         K2         1           KIMR         %         47 34 0.0         122 38 35.0         0.010         Kitsap North Road Shed         K2         1           KIMR         %         47 4 0.0 <td>BRKS</td> <td>%</td> <td>47 45 19.7</td> <td>122 17 18.4</td> <td>0.100</td> <td>Brookside Elementary, Lake Forest Park</td> <td>K2.BBZ</td> <td>I</td> | BRKS | % | 47 45 19.7 | 122 17 18.4 | 0.100 | Brookside Elementary, Lake Forest Park | K2.BBZ  | I         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CSEN | % | 47 48 04.5 | 122 13 06.5 | 0.055 |                                        | K2      | 1         |
| EARN $7$ $47$ $41$ $212$ $22$ $10$ $0.010$ East Ridge Elementary, WoodinvilleK2 $1$ ELW $6$ $47$ $23$ $88$ $11$ $22$ $37$ $0.267$ Echo Lake, WAA.BBL.DFINN $6$ $47$ $33$ $51.8$ $122$ $13$ $55.0$ $0.010$ Finn Hill Jr High, JuanitaK2 $1$ GNW $6$ $47$ $33$ $51.8$ $122$ $49$ $31.0$ $0.165$ Green Mountain, WA (CREST)EPI,BB3L-PPPHAO# $45$ $30$ $31.22$ $39$ $24.0$ $0.016$ Harrison Substation, OregonFBA25DHOLY $47$ $33$ $30.9$ $122$ $53$ $44.4$ $0.000$ Keeler, Oregon BPAA20L.E.DKIMB $6$ $47$ $30.0$ $122$ $53$ $41.4$ $0.000$ Kisap North Road ShedK21KIMR $7$ $47$ $30.0$ $122$ $37$ $47.0$ $0.100$ Kisap North Road ShedK21LAWT $7$ $47$ $40.06.5$ $123$ $35.0$ $0.100$ Kisap North Road ShedK21LAWT $7$ $47$ $40.06.5$ $123$ $35.0$ $0.100$ Kisap North Road ShedK21LAWT $6$ $47.30.66$ $122$ $37.47.0$ $0.100$ Kisap North Road ShedK21LAWT $6$ $47.30.66$ $123$ $35.16$ $120$ $120$ $14.80.0$ </td <td></td> <td></td> <td></td> <td>122 41 22.5</td> <td></td> <td>Canyon Substation, Oregon</td> <td>FBA23</td> <td>D</td>                                                                                                                                                                                                                                                                                                                                                                                   |      |   |            | 122 41 22.5 |       | Canyon Substation, Oregon              | FBA23   | D         |
| ELW%47 29 38.8121 52 21.60.267Echo Lake, WAA.BBL.DERW%48 27 14.4122 37 30.20.389Mt. Erie, WAA.BBL.DGNW%47 43 08.9122 13 55.00.010Finn Hill Jr High, JuanitaK2IGNW%47 33 31.8122 49 31.00.165Green Mountain, WA (CREST)EPI.BB3L-PPPHAO#45 30 33.1122 39 24.00.018Harrison Substation. OregonFBA2.3DHOLY%47 33 53.0122 35 44.40.000Keeler. Oregon BPAA20L.E.DKIMB%47 34 30.0122 18 05.90.100Kimball Elementary. ScattleK21KIMR%47 30 10.17122 46 01.90.103Kitsap Moderate Risk WasteK21KIMR%47 45 06.0122 38 35.00.010Kitsap Treatment PlantK21LANE%44 40 30.6.5123 13 54.80.100Kitsap Treatment PlantK21LANT%47 39 3.4122 23 21.90.111Lawton Elementary. ScattleA201LANT%47 30 56.6123 13 54.80.105Leca Jr High, WoodinvilleA1LON%46 45 00.0122 18 30.00.155Leca Jr High, WoodinvilleA1LON%47 47 80.8122 12 10.6.20.122Maple ValleyA1.DMPL%47 35 36.6123 13 52.0.20.186Morroe BPA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Dodson Butte, OR (UO CREST)</td> <td>EPI.BB3</td> <td>E.L-PPP</td>                                                                                                                                                                                                                                                                                                                                                                                                                 |      |   |            |             |       | Dodson Butte, OR (UO CREST)            | EPI.BB3 | E.L-PPP   |
| ERW $\%$ 48 27 14.4122 37 30.20.389Mt. Erie, WAABBLDFINN $\%$ 47 33 0.89122 13 55.00.010Finn Hill Jr High, JuanitaK2IGNW $\%$ 47 33 51.8122 49 31.00.165Green Mountain, WA (CREST)EPI,BB3L-PPPHAO#45 30 33.1122 32 40.00.018Harrison Substation, OregonFBA2.3DHOLY#47 33 55.3122 32 40.00.164Holy RosaryK2IKEEL%47 34 0.9122 18 0.590.100Kimball Elementary. SeattleK2IKIMR%47 43 0.9122 38 35.00.010Kitsap North Road ShedK2IKINR%47 43 0.06.5122 38 35.00.010Kitsap North Road ShedK2IKINR%47 40 30.0122 37 47.00.100Kitsap Treatment PlantK2ILANE%44 03 06.5123 13 54.80.120Lawton Elementary. SeattleA20ILON%46 45 00.0121 48 36.00.833Longmire (CREST)EPI,BB3L-PPP,DMBPA%47 36 86.2121 53 20.20.186Monroe BPAA20LDNOWS%47 41 12.0122 15 21.20.000NOAA. Bidg 3A20LDMPL%47 36 30.2127 42.40.123Mapic ValleyALDNOWS%47 41 12.0122 15 21.20.120NOA Bidg 3A20LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |            |             |       | East Ridge Elementary, Woodinville     |         |           |
| FINN         %         47 43 08.9         122 13 55.0         0.010         Finn Hill Jr High, Juanita         K2         I           GNW         %         47 33 01.8         122 49 31.0         0.165         Green Mountain, WA (CREST)         EPI.BB3         L-PPP           HAO         #         45 30 33.1         122 39 24.0         0.018         Harrison Substation. Oregon         FBA23         D           HOLY         %         47 33 35.0         122 35 44.4         0.000         Keeler. Oregon BPA         A20         L.E.D           KIMB         %         47 30 10.1         712 24 60.19         0.010         Kitsap Moderate Risk Waste         K2         1           KIMR         %         47 03 00.1         212 38 35.0         0.0100         Kitsap North Road Shed         K2         1           LANE         %         44 03 06.5         123 13 54.8         0.120         Laavon Elementary. Scattle         A20         1           LANE         %         44 03 06.5         123 13 54.8         0.120         Laavon Elementary. Scattle         A20         1           LON         %         46 45 00.0         121 48 36.0         0.83         Longurine (CREST)         EP1.B83         L-PPP.D           MBPA <td></td> <td></td> <td></td> <td></td> <td></td> <td>Echo Lake, WA</td> <td>A,BB</td> <td>L.D</td>                                                         |      |   |            |             |       | Echo Lake, WA                          | A,BB    | L.D       |
| GNW%47 33 51.8122 49 31.00.165Green Mountain, WA (CREST)EPI.BB3L-PPPHAO#45 30 33.1122 39 24.00.018Harrison Substation. OregonFBA23DHOLY%47 33 55.3122 23 02.10.106Holy RosaryK2IKEEL%45 33 0.0122 53 44.40.000Keeler. Oregon BPAA20L.E.DKIMB%47 34 30.9122 18 05.90.100Kimball Elementary. ScattleK2IKIMR%47 30 11.7122 46 01.90.123Kitsap Moderate Risk WasteK2IKINR%47 45 06.0122 38 35.00.010Kitsap North Road ShedK2ILANE%47 40 306.5123 13 34.80.120Lane Substation. Eugene. OregonK2L.ELAWT%47 30 23.4122 03 21.90.111Lawton Elementary. SeattleA20ILON%47 33 56.6121 53 30.20.186Monroe BPAA20LDMBPA%47 35 66.6121 53 20.20.186Monroe BPAA20LDMPL%47 38 08.2121 160.20.122Maple ValleyALDNOWS%47 41 12.0122 15 21.20.000NOAA.8 Idg 3A20IPCEP%47 36 50.2121 53 51.60.162PreteinetK2IPCEP%47 36 50.0122 16 74.40.128PreteinetK2IPCEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |   |            |             |       |                                        |         | L,D       |
| HAO       #       45 30 33.1       122 39 24.0       0.018       Harrison Substation. Oregon       FB 223       D         HOLY       #       47 33 55.3       122 23 02.1       0.106       Holy Rosary       K2       1         KEEL       %       47 33 0.0       122 18 05.9       0.100       Kimball Elementary. Scattle       K2       1         KIMR       %       47 30 11.7       122 18 05.9       0.100       Kitsap Moderate Risk Waste       K2       1         KIMR       %       47 30 0.0       122 38 35.0       0.010       Kitsap North Road Shed       K2       1         KINR       %       47 30 0.0       122 38 35.0       0.010       Kitsap North Road Shed       K2       1         LANE       %       44 03 0.0       122 38 37.0       0.100       Kitsap North Road Shed       K2       1         LAWT       %       47 30 23.4       122 20 65.3       0.155       Leatar J High. Woodinville       A       1         LON       %       46 43 0.0.0       121 48 30.0       0.853       Longmire (CREST)       EPI.BB3       L-PPP.D         MBPA       %       47 35 56.6       121 53 20.2       0.160       PCE AST Precinct       K2       1                                                                                                                                                                                                                                                |      |   |            |             |       |                                        |         |           |
| HOLY       %       47 33 55.3       122 23 02.1       0.106       Holy Rosary       K2       1         KEEL       %       45 33 0.0       122 53 44.4       0.000       Keier. Oregon BPA       A20       LE.D         KIMR       %       47 34 30.9       122 18 05.9       0.100       Kimball Elementary. Seattle       K2       1         KIMR       %       47 30 11.7       122 46 01.9       0.123       Kitsap Moderate Risk Waste       K2       1         KIMR       %       47 45 06.0       122 31 35 44.8       0.120       Kitsap North Road Shed       K2       1         LANE       %       44 03 06.5       122 31 35 44.8       0.120       Lane Substation. Eugene. Oregon       K2       LE         LAWT       %       47 30 33.4       122 03 2.19       0.111       Lawton Elementary. Seattle       A20       1         LON       % 46 45 0.0       121 83 80.0       0.853       Long Wastation. Eugene. Oregon       K2       L         MPL       %       47 32 08.2       12 83 20.2       0.186       Monroe BPA       A200       LD         MPL       % 47 31 12.0       122 17 02.4       0.160       PC East Precinct       K2       1         NOWS                                                                                                                                                                                                                                              |      |   |            |             |       |                                        |         | L-PPP     |
| KEEL945 33 0.0122 53 44.40.000Keefer. Oregon BPAA20L.E.DKIMB947 34 30.9122 18 05.90.100Kimball Elementary. SeattleK21KIMR947 30 11.7122 46 01.90.123Kitsap North Road ShedK21KINR947 45 06.0122 37 37.00.100Kitsap North Road ShedK21LANE944 03 06.5123 13 54.80.120Lane Substation. Eugene. OregonK2L.ELAWT947 39 23.4122 23 21.90.111Lawton Elementary. SeattleA201LEOT747 46 01.4122 06 54.30.155Leota J High. WoodinvilleA1LON946 45 00.0121 48 36.00.853Longmire (CREST)EPI.BB3L.PPP.DMBPA947 28 08.2122 11 06.20.122Maple ValleyAL.DMPL947 28 08.2122 12 10 06.20.122Maple ValleyAL.DNOWS947 41 12.0122 17 24.20.160PC East PrecinctK21PCEF947 06 33.0122 17 24.20.160PC Taining CenterK21PCMD943 84 80.0120 55 19.01.865Pine ML. OR (U0 CREST)EPI.BB3EL-PPPPNLK947 34 50.0122 18 00.90.239PC Mountain DectachmentK21PCFM946 53 20.9122 21 18 00.90.208Raver BPAA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>D</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |   |            |             |       |                                        |         | D         |
| KIMB $\%$ 473430.91221805.90.100Kimball Elementary. SeattleK21KIMR $\%$ 473011.71224601.90.123Kitsap Moderate Risk WasteK21KINR $\%$ 474500.01223835.00.010Kitsap North Road ShedK21LANE $\%$ 474030.01223747.00.100Kitsap Treatment PlantK21LANE $\%$ 440306.51223154.80.120Lane Substation. Eugene. OregonK2L.ELAWT $\%$ 474604.112205.40.155Leota Jr High. WoodinvilleA1LON $\%$ 464500.0121830.00.833Longmit (CREST)EPI.B83L.PPP.DMBPA $\%$ 475356.61215320.20.186Monroe BPAA200L.DMPL $\%$ 472808.21221724.20.100NOAA. Bldg 3A2001PCEP $\%$ 4706.30.1221724.20.100PC Trauning CenterK21PCEP $\%$ 465923.3122627.40.137PC Trauning CenterK21PCMD $\%$ 465320.912.2110.00ReserverALPCMD $\%$ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |   |            |             |       |                                        |         | I         |
| KINR $\%$ 47 30 11.7122 46 01.90.123Kitsap Moderate Risk Waste $\ddot{K}2$ 1KINR $\%$ 47 45 06.0122 38 35.00.010Kitsap North Road ShedK21KINP $\%$ 47 40 30.0122 37 37.00.100Kitsap North Road ShedK21LANE $\%$ 44 03 06.5123 13 54.80.120Lane Substation. Eugene. OregonK2L.ELAWT $\%$ 47 79 02.34122 23 21.90.111Lawton Elementary. ScattleA201LEOT $\%$ 47 46 04.4122 06 54.30.155Leota Jr High. WoodinvilleA1LON $\%$ 47 35 56.6121 53 20.20.186Monroe BPAA20L.DMPL $\%$ 47 28 08.2122 11 06.20.122Maple ValleyAL.DNOWS $\%$ 47 41 12.0122 15 21.20.000NOAA. Bldg 3A201PCEP $\%$ 47 06 43.0122 17 24.20.160PC East PrecinctK21PCRM $\%$ 46 59 23.3122 16 0.00.239PC Mountain DetachmentK21PCRM $\%$ 47 34 50.0122 01 14.20.1865Pine Mt., OR (U0 CREST)EPI.BB3E.L-PPPPNLK $\%$ 47 34 50.0122 01 42.40.128Pine Mt., OR (U0 CREST)EPI.BB3E.L-PPPPNLK $\%$ 47 34 50.0122 01 42.40.128Pine Mt., OR (U0 CREST)EPI.BB3E.L-PPPPNLK $\%$ 47 36 0.0122 00.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |   |            |             |       |                                        |         | L.E.D     |
| KINR         %         47         45         06.0         122         38         35.0         0.010         Kitsap North Road Shed         K2         1           KITP         %         47         40         30.0         122         37         7.0         0.100         Kitsap Treatment Plant         K2         1           LANE         %         44         03         0.6         123         13         18         0.120         Lane Substation. Eugene. Oregon         K2         LE           LAWT         %         47         30         1.23         0.111         Lawton Elementary. Scattle         A         1           LON         %         47         45         0.00         121         48         30.0         0.853         Longmire (CREST)         EPI.BB3         L.PPP.D           MBPA         %         47         53         56.6         121         153         20.2         0.086         Monroe BPA         A20         1.D           MVL         %         47         41         120         122         15         1.0         0.000         NOA. Bldg 3         A20         1           PCEF         %         46         59         23.3                                                                                                                                                                                                                                            |      |   |            |             |       |                                        |         | 1         |
| KITP $\%$ 47 40 30.0122 37 47.00.100Kitsap Treatment PlantK21LANE $\%$ 44 03 06.5123 13 54.80.120Lane Substation. Eugene. OregonK2L.ELAWT $\%$ 47 30 23.4122 23 21.90.111Lawton Elementary. SeattleA201LEOT $\%$ 47 46 04.4122 06 54.30.155Leota Jr High. WoodinvilleA1LON $\%$ 46 45 00.0121 48 36.00.853Longmire (CREST)EPI.BB3L-PPP.DMBPA $\%$ 47 35 56.6121 53 20.20.186Monroe BPAA20L.DMPL $\%$ 47 74 06 43.0122 15 21.20.000NOAA. Bldg 3A201PCEP $\%$ 47 06 43.0122 17 24.20.160PC East PrecinctK21PCFR $\%$ 46 59 23.3122 26 27.40.137PC Training CenterK21PCMD $\%$ 43 88 40.0122 18 00.90.239PC Mountain DetachmentK21PNK $\%$ 47 33 53.2122 21 15.00.140Queen AnneALQAW $\%$ 47 32 01.40121 55 57.60.208Raver BPAALRBN $\%$ 47 20 05.4122 11 10.20.000Benson Elementary. RentonK2IRBN $\%$ 47 32 05.8122 11 10.20.000Benson Elementary. NewcastleALRAW $\%$ 47 32 05.8122 11 10.20.000Benson Elementary. Newcastle <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                  |      |   |            |             |       |                                        |         | 1         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |   |            |             |       |                                        |         | I         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |   |            |             |       |                                        |         | 1         |
| LEOT       %       47 46 04.4       122 06 54.3       0.155       Leota Jr High. Woodinville       A       I         LON       %       46 45 00.0       121 48 36.0       0.853       Longmire (CREST)       EPI.BB3       L-PPP.D         MBPA       %       47 35 36.6       121 53 20.2       0.186       Monroe BPA       A20       L.D         MPL       %       47 28 08.2       122 11 06.2       0.122       Maple Valley       A       L.D         NOWS       %       47 41 12.0       122 15 21.2       0.000       NOAA. Bldg 3       A20       I         PCEP       %       47 66 43.0       122 17 24.2       0.160       PC East Precinct       K2       I         PCMD       %       46 53 20.9       122 18 00.9       0.239       PC Mountain Detachment       K2       I         PCMD       %       43 48 40.0       120 52 19.0       1.865       Pine M.L. OR (U0 CREST)       EPI.BB3       E.L-PPP         PNLK       %       47 34 550.0       122 01 42.4       0.128       Pine Lake Middle School. Issaquah       K2       I         QAW       %       47 20 65.4       122 11 10.2       0.000       Benson Elementary. Renton       K2       I      <                                                                                                                                                                                                                                              |      |   |            |             |       |                                        |         |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |   |            |             |       |                                        |         | 1         |
| MBPA       9:       47       53       56.6       121       53       20.2       0.186       Monroe BPA       A20       L.D         MPL       9:       47       28       08.2       122       11       06.2       0.122       Maple Valley       A       L.D         NOWS       9:       47       41       12.0       122       15       21.2       0.000       NOAA. Bldg       A20       1         PCEP       9:       47       06       43.0       122       15       21.2       0.000       NOAA. Bldg       A20       1         PCEP       9:       47       06       43.0       122       15       21.2       0.000       NOAA. Bldg       A20       1         PCFR       9:       46       53       20.9       122       160.9       D239       PC Training Center       K2       1         PNLK       9:       47       34       84.00       102       1865       Pine Lake Middle School. Issaquah       K2       1       A       L.D         QAW       9:       47       37       53.2       122       11       0.2       0.000       Benon Elementary. Renton       K2       1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                        |      |   |            |             |       |                                        |         |           |
| MPL       %       47 28 08.2       122 11 06.2       0.122       Maple Valley       A       L.D         NOWS       %       47 41 12.0       122 15 21.2       0.000       NOAA. Bldg 3       A20       I         PCEP       %       47 06 43.0       122 17 24.2       0.160       PC East Precinct       K2       I         PCFR       %       46 59 23.3       122 26 27.4       0.137       PC Training Center       K2       I         PCMD       %       46 53 20.9       122 18 00.9       0.239       PC Mountain Detachment       K2       I         PIN       %       43 48 40.0       120 52 19.0       1.865       Pine ML. OR (U0 CREST)       EPI.BB3       E.L-PPP         PNLK       %       47 37 53.2       122 21 15.0       0.140       Queen Anne       A       L         RAW       %       47 20 14.0       121 55 57.6       0.208       Raver BPA       A       L.D         RBEN       %       47 32 53.8       122 11 10.2       0.000       Benson Elementary. Renton       K2       I         RBO       %       47 32 27.0       122 33 51.5       0.158       Rocky Bute. Oregon       FBA23       D         RBO       %                                                                                                                                                                                                                                                                            |      |   |            |             |       |                                        |         |           |
| NOWS $\%$ 47 41 12.0122 15 21.20.000NOAA. Bldg 3A20IPCEP $\%$ 47 06 43.0122 17 24.20.160PC East PrecinctK2IPCFR $\%$ 46 59 23.3122 26 27.40.137PC Training CenterK2IPCMD $\%$ 46 53 20.9122 18 00.90.239PC Moutain DetachmentK2IPIN $\%$ 43 48 40.0120 52 19.01.865Pine Mt., OR (U0 CREST)EPI,BB3E,L-PPPPNLK $\%$ 47 37 53.2122 21 15.00.140Queen AnneALQAW $\%$ 47 37 53.2122 21 15.00.140Queen AnneALRAW $\%$ 47 26 05.4122 11 10.20.000Benson Elementary. RentonK2IRBO#45 32 27.0122 33 51.50.158Rocky Butte. OregonFBA23DRHAZ $\%$ 47 32 25.8122 11 08.40.108Hazelwood Elementary. NewcastleAIRWW $\%$ 46 57 50.1123 32 35.90.015Ranney Well (CREST)EPI,BB3L-PPPSBES $\%$ 48 40 05.9122 24 54.20.000Silver Beach Elementary. BellinghamK2ISEA $\%$ 47 39 18.0122 18 30.00.300SeattleA.BBLSP2 $\%$ 48 04 39.0123 02 44.00.030SeattleA.BBLSP2 $\%$ 48 04 39.0123 02 44.00.030SeattleA.BBL<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |   |            |             |       |                                        |         |           |
| PCEP       %       47 06 43.0       122 17 24.2       0.160       PC East Precinct       K2       1         PCFR       %       46 59 23.3       122 26 27.4       0.137       PC Training Center       K2       1         PCMD       %       46 53 20.9       122 18 00.9       0.239       PC Mountain Detachment       K2       1         PIN       %       43 48 40       120 52 19.0       1.865       Pine ML, OR (U0 CREST)       EPI.BB3       E,L-PPP         PNLK       %       47 34 50.0       122 01 42.4       0.128       Pine Lake Middle School, Issaquah       K2       1         QAW       %       47 37 53.2       122 21 15.0       0.140       Queen Anne       A       L         RAW       %       47 26 05.4       122 11 10.2       0.000       Benson Elementary. Renton       K2       I         RBO       # 47 32 25.8       122 11 08.4       0.108       Hazelwood Elementary. Newcastle       A       I         ROSS       %       47 32 25.8       122 11 08.4       0.100       Ross BPA       A20       L.E.D         RWW       %       46 67 50.1       123 32 35.9       0.0100       Ross BPA       A20       L.E.D         SBES                                                                                                                                                                                                                                                           |      |   |            |             |       |                                        |         | L.D       |
| PCFR       %       46 59 23.3       122 26 27.4       0.137       PC Training Center       K2       1         PCMD       %       46 53 20.9       122 18 00.9       0.239       PC Mountain Detachment       K2       1         PIN       %       43 48 40.0       120 52 19.0       1.865       Pine Mt., OR (U0 CREST)       EPI,BB3       E,L-PPP         PNLK       %       47 34 50.0       122 21 15.0       0.140       Queen Anne       A       L         QAW       %       47 20 14.0       121 55 57.6       0.208       Raver BPA       A       L         RBDN       %       47 26 05.4       122 11 10.2       0.000       Benson Elementary, Renton       K2       I         RBO       #       47 32 5.8       122 11 10.2       0.000       Benson Elementary, Renton       K2       I         RBO       #       47 32 25.8       122 11 08.4       0.108       Hazelwood Elementary, Newcastle       A       I         ROSS       %       45 32 27.0       123 33 5.9       0.15       Raney Well (CREST)       EPI,BB3       L-PPP         SBES       %       48 60 5.9       122 24 54.2       0.000       Siver Beach Elementary, Bellingham       K2       I                                                                                                                                                                                                                                                |      |   |            |             |       |                                        |         | 1         |
| PCMD       %       46 53 20.9       122 18 00.9       0.239       PC Mountain Detachment       K2       1         PIN       %       43 48 40.0       120 52 19.0       1.865       Pine ML, OR (U0 CREST)       EPI,BB3       E,L-PPP         PNLK       %       47 34 50.0       122 01 42.4       0.128       Pine Lake Middle School, Issaquah       K2       I         QAW       %       47 37 53.2       122 21 15.0       0.140       Queen Anne       A       L         RAW       %       47 26 05.4       122 11 10.2       0.000       Benson Elementary. Renton       K2       I         RBEN       %       47 26 05.4       122 11 0.2       0.000       Benson Elementary. Renton       K2       I         RBO       #       45 32 27.0       122 33 51.5       0.158       Rocky Butte. Oregon       FBA23       D         RHAZ       %       47 30 946.2       122 39 37.0       0.100       Ross BPA       A20       L.E.D         RWW       %       46 57 50.1       123 32 35.9       0.015       Ranney Well (CREST)       EPI.BB3       L.PPP         SEA       %       47 39 18.0       122 18 30.0       0.030       Seattle       A.BB       L.D                                                                                                                                                                                                                                                         |      |   |            |             |       |                                        |         |           |
| PIN       %       43 48 40.0       120 52 19.0       1.865       Pine ML, OR (U0 CREST)       EPI, BB3       E,L-PPP         PNLK       %       47 34 50.0       122 01 42.4       0.128       Pine Lake Middle School, Issaquah       K2       I         QAW       %       47 37 53.2       122 21 15.0       0.140       Queen Anne       A       L         RAW       %       47 20 14.0       121 55 57.6       0.208       Raver BPA       A       L         RBEN       %       47 32 25.8       122 11 10.2       0.000       Benson Elementary, Renton       K2       I         RBO       #       45 32 27.0       122 33 51.5       0.158       Rocky Butte, Oregon       FBA23       D         RHAZ       %       47 32 25.8       122 11 08.4       0.100       Ross BPA       A20       L.E.D         RWW       %       46 65 9       122 33 23 5.9       0.015       Ranney Well (CREST)       EPI.BB3       L-PPP         SBES       %       47 39 18.0       122 14 52.8       0.030       Seattle       A20       L.E.D         RWW       %       46 65 9       122 24 54.2       0.000       Silver Beach Elementary, Bellingham       K2       I                                                                                                                                                                                                                                                               |      |   |            |             |       | PC Training Center                     |         |           |
| PNLK       %       47 34 50.0       122 01 42.4       0.128       Pine Lake Middle School, Issaquah       K2       I         QAW       %       47 37 55.2       122 21 15.0       0.140       Queen Anne       A       L         RAW       %       47 20 14.0       121 55 57.6       0.208       Raver BPA       A       L         RBEN       %       47 26 05.4       122 11 10.2       0.000       Benson Elementary, Renton       K2       I         RBO       #       45 32 27.0       122 33 51.5       0.158       Rocky Butte. Oregon       FBA23       D         RHAZ       %       47 39 46.2       122 39 37.0       0.100       Ross BPA       A20       L.E.D         RWW       %       46 05.9       122 24 54.2       0.000       Silver Beach Elementary, Newcastle       A       I         RWW       %       47 39 18.0       122 14 52.8       0.000       Silver Beach Elementary, Bellingham       K2       I         SEA       %       47 39 18.0       122 14 52.8       0.030       Seattle       A.BB       L.D         SP2       %       47 39 18.0       122 18 30.0       0.30       Seattle       A.BB       LD         SQM <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>                                                                                                                                                                               |      |   |            |             |       |                                        |         | 1         |
| QAW       %       47 37 53.2       122 21 15.0       0.140       Queen Anne       A       L         RAW       %       47 20 14.0       121 55 57.6       0.208       Raver BPA       A       L.D         RBEN       %       47 26 05.4       122 11 10.2       0.000       Benson Elementary. Renton       K2       I         RBO       #       45 32 27.0       122 33 51.5       0.158       Rocky Butte. Oregon       FBA23       D         RHAZ       %       47 32 25.8       122 11 08.4       0.108       Hazelwood Elementary. Newcastle       A       I         ROSS       %       45 39 46.2       122 39 37.0       0.100       Ross BPA       A20       L.E.D         RWW       %       46 67 50.1       123 32 35.9       0.015       Ranney Well (CREST)       EPI.BB3       L-PPP         SBES       %       48 46 05.9       122 24 54.2       0.000       Silver Beach Elementary. Bellingham       K2       I         SP2       %       47 39 18.0       122 14 52.8       0.030       Seward Park. Seattle       A.BB       L.D         SQM       %       48 04 39.0       123 02 44.0       0.030       Sequim. WA (CREST)       EPI.BB       L-PPP                                                                                                                                                                                                                                                        |      |   |            |             |       |                                        |         |           |
| RAW       %       47 20 14.0       121 55 57.6       0.208       Raver BPA       A       L.D         RBEN       %       47 26 05.4       122 11 10.2       0.000       Benson Elementary. Renton       K2       I         RBO       #       45 32 27.0       122 33 51.5       0.158       Rocky Butte. Oregon       FBA23       D         RHAZ       %       47 32 25.8       122 11 08.4       0.108       Hazelwood Elementary. Newcastle       A       I         ROSS       %       45 39 46.2       122 39 37.0       0.100       Ross BPA       A20       L.E.D         RWW       %       46 57 50.1       123 32 35.9       0.015       Ranney Well (CREST)       EPI.BB3       L.PPP         SBES       %       48 46 05.9       122 14 52.8       0.030       Seattle       A.BB       L.D         SP2       %       47 33 23.3       122 14 52.8       0.030       Sequim. WA (CREST)       EPI.BB       L-PPP         TBPA       %       47 15 28.1       122 22 05.9       0.002       Tacoma WA BPA       A       L.D         TKCO       %       47 32 12.7       122 18 01.5       0.005       King Co EOC       A20       I         WW                                                                                                                                                                                                                                                                          |      |   |            |             |       |                                        |         | •         |
| RBEN       %       47 26 05.4       122 11 10.2       0.000       Benson Elementary. Renton       K2       I         RBO       #       45 32 27.0       122 33 51.5       0.158       Rocky Butte. Oregon       FBA23       D         RHAZ       %       47 32 25.8       122 11 08.4       0.108       Hazelwood Elementary. Newcastle       A       I         ROSS       %       45 39 46.2       122 39 37.0       0.100       Ross BPA       A20       L.E.D         RWW       %       46 57 50.1       123 32 35.9       0.015       Ranney Well (CREST)       EPI.BB3       L-PPP         SBEA       %       47 39 18.0       122 18 30.0       0.030       Seattle       A.BB       L.D         SP2       %       47 33 23.3       122 14 52.8       0.030       Sequim. WA (CREST)       EPI.BB       L-PPP         TBPA       %       47 15 28.1       122 20 5.9       0.002       Tacoma WA BPA       A       L         VPS       %       47 15 51.4       122 20 5.9       0.002       Tacoma WA BPA       A       L.D                                                                                                                                                                                                                                                                                                                                                                                             |      |   |            |             |       |                                        |         |           |
| RBO       #       45 32 27.0       122 33 51.5       0.158       Rocky Butte. Oregon       FBA23       D         RHAZ       %       47 32 25.8       122 11 08.4       0.108       Hazelwood Elementary. Newcastle       A       I         ROSS       %       45 39 46.2       122 39 37.0       0.100       Ross BPA       A20       L.E.D         RWW       %       46 57 50.1       123 32 35.9       0.100       Ross BPA       K20       L.E.D         SBES       %       48 46 05.9       122 24 54.2       0.000       Silver Beach Elementary. Bellingham       K2       I         SEA       %       47 39 18.0       122 18 30.0       0.030       Seattle       A.BB       L.D         SP2       %       47 33 23.3       122 14 52.8       0.030       Sequim. WA (CREST)       EPI.BB       L-PPP         SQM       %       48 04 39.0       123 02 44.0       0.030       Sequim. WA (CREST)       EPI.BB       L-PPP         TBPA       %       47 15 28.1       122 20 59       0.002       Tacoma WA BPA       A       L.D         TKCO       %       47 15 28.1       122 22 856.3       0.013       University of Puget Sound       A20       I                                                                                                                                                                                                                                                              |      |   |            |             |       |                                        |         |           |
| RHAZ       %       47 32 25.8       122 11 08.4       0.108       Hazelwood Elementary, Newcastle       A       I         ROSS       %       45 39 46.2       122 39 37.0       0.100       Ross BPA       A20       L.E.D         RWW       %       46 57 50.1       123 32 35.9       0.015       Ranney Well (CREST)       EPI.BB3       L.PPP         SBES       %       48 46 05.9       122 14 54.2       0.000       Silver Beach Elementary, Bellingham       K2       I         SEA       %       47 39 18.0       122 18 30.0       0.030       Seattle       A.BB       L.D         SP2       %       47 39 18.0       123 02 44.0       0.030       Sequith: WA (CREST)       EPI.BB       L.PPP         TBPA       %       47 15 28.1       122 22 05.9       0.002       Tacoma WA BPA       A       L.D         TKCO       %       47 15 21.7       122 18 01.5       0.005       King Co EOC       A20       I         WPS       %       47 15 51.4       122 28 56.3       0.113       University of Puget Sound       K2       I                                                                                                                                                                                                                                                                                                                                                                             |      |   |            | 122 11 10.2 |       |                                        |         |           |
| ROSS       %       45 39 46.2       122 39 37.0       0.100       Ross BPA       A20       L.E.D         RWW       %       46 57 50.1       123 32 35.9       0.015       Ranney Well (CREST)       EPI.BB3       L-PPP         SBES       %       48 46 05.9       122 24 54.2       0.000       Silver Beach Elementary, Bellingham       K2       I         SEA       %       47 39 18.0       122 18 30.0       0.030       Seattle       A.BB       L.D         SP2       %       47 33 23.3       122 14 52.8       0.030       Seward Park, Seattle       A.BB       L         SQM       %       48 04 39.0       123 02 44.0       0.030       Seward Park, Seattle       A.BB       L.PPP         TBPA       %       47 15 28.1       122 20 5.9       0.002       Tacoma WA (CREST)       EPI.BB       L-PPP         TKCO       %       47 32 12.7       122 18 01.5       0.005       King Co EOC       A20       I         UPS       %       47 15 51.4       122 28 56.3       0.113       University of Puget Sound       K2       I                                                                                                                                                                                                                                                                                                                                                                             |      |   |            |             |       |                                        |         | D         |
| RWW       %       46 57 50.1       123 32 35.9       0 015       Ranney Well (CREST)       EPI.BB3       L.PPP         SBES       %       48 46 05.9       122 24 54.2       0.000       Silver Beach Elementary, Bellingham       K2       I         SEA       %       47 39 18.0       122 18 30.0       0.030       Seattle       A.BB       L.D         SP2       %       47 33 23.3       122 14 52.8       0.030       Seward Park, Seattle       A.BB       L         SQM       %       48 04 39.0       123 02 44.0       0.030       Sequim. WA (CREST)       EPI.BB       L-PPP         TBPA       %       47 15 28.1       122 22 05.9       0.002       Tacoma WA BPA       A       L.D         TKCO       %       47 32 12.7       122 18 01.5       0.005       King Co EOC       A20       I         UPS       %       47 15 51.4       122 28 56.3       0.113       University of Puget Sound       K2       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |            |             |       |                                        |         |           |
| SBES         %         48         46         05.9         122         24         54.2         0.000         Silver Beach Elementary, Bellingham         K2         I           SEA         %         47         39         18.0         122         18         30.0         0.030         Seattle         A.BB         L.D           SP2         %         47         33         23.3         122         14         52.8         0.030         Seward Park, Seattle         A.BB         L           SQM         %         48         04         39.0         123         02         44.0         0.030         Sequim, WA (CREST)         EPI, BB         L-PPP           TBPA         %         47         15         28.1         122         20         59         0.002         Tacoma WA BPA         A         L.D           TKCO         %         47         15         21.2         18         01.5         0.005         King Co EOC         A20         I           UPS         %         47         15         51.4         122         28         56.3         0.113         University of Puget Sound         K2         1                                                                                                                                                                                                                                                                                      |      |   |            |             |       |                                        |         |           |
| SEA         %         47         39         18.0         122         18         30.0         0.030         Seattle         A.BB         L.D           SP2         %         47         33         23.3         122         14         52.8         0.030         Seward Park. Seattle         A.BB         L           SQM         %         48         04         39.0         123         02         44.0         0.030         Sequim. WA (CREST)         EPI,BB         L-PPP           TBPA         %         47         15         28.1         122         20         9         0.002         Tacoma WA BPA         A         L.D           TKCO         %         47         15         21.7         122         18         01.5         0.005         King Co EOC         A20         I           UPS         %         47         15         51.4         122         28         56.3         0.113         University of Puget Sound         K2         1                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |   |            |             |       |                                        |         |           |
| SP2         %         47 33 23.3         122 14 52.8         0.030         Seward Park, Seattle         A.BB         L           SQM         %         48 04 39.0         123 02 44.0         0.030         Sequim, WA (CREST)         EPI,BB         L-PPP           TBPA         %         47 15 28.1         122 22 05.9         0.002         Tacoma WA BPA         A         L.D           TKCO         %         47 12 12.7         122 18 01.5         0.005         King Co EOC         A20         I           UPS         %         47 15 51.4         122 28 56.3         0.113         University of Puget Sound         K2         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |   |            |             |       |                                        |         |           |
| SQM         %         48 04 39.0         123 02 44.0         0.030         Sequim. WA (CREST)         EPI.BB         L-PPP           TBPA         %         47 15 28.1         122 22 05.9         0.002         Tacoma WA BPA         A         L.D           TKCO         %         47 32 12.7         122 18 01.5         0.005         King Co EOC         A20         I           UPS         %         47 15 51.4         122 28 56.3         0.113         University of Puget Sound         K2         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |   |            |             |       |                                        |         |           |
| TBPA         %         47         15         28.1         122         20         9         0.002         Tacoma WA BPA         A         L.D           TKCO         %         47         32         12.7         122         18         01.5         0.005         King Co EOC         A20         1           UPS         %         47         15         51.4         122         28         56.3         0.113         University of Puget Sound         K2         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |   |            |             |       |                                        |         |           |
| TKCO         %         47 32 12.7         122 18 01.5         0.005         King Co EOC         A20         1           UPS         %         47 15 51.4         122 28 56.3         0.113         University of Puget Sound         K2         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |   |            |             |       |                                        |         |           |
| UPS % 47 15 51.4 122 28 56.3 0.113 University of Puget Sound K2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |   |            |             |       |                                        |         | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |            |             |       |                                        |         | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |            |             |       |                                        |         | 1         |

Table 2D shows stations recorded by the PNSN but not initiated in PNSN EARTHWORM nodes during the first quarter 2001. Columns as in Table 2A. "Canada" are stations received from the Pacific Geoscience Centre in British Columbia, Canada; PNNL is the Battelle Pacific Northwest National Labs; MT is Montana Bureau of Mines; OSU is Oregon State University; USNSN is the US National Seismic Network; CAL-NET is the USGS Northern California Network.

| TABLE 2D |   |            |             |       |                                      |  |  |  |  |  |
|----------|---|------------|-------------|-------|--------------------------------------|--|--|--|--|--|
| STA      | F | LAT        | LONG        | EL    | NAME                                 |  |  |  |  |  |
| BEN      |   | 46 31 12.0 | 119 43 18.0 | 0.335 | PNNL station                         |  |  |  |  |  |
| CHMT     |   | 46 54 51.0 | 113 15 07.0 | -     | Chamberlain Mtn. MT                  |  |  |  |  |  |
| COR      |   | 44 35 08.5 | 123 18 11.5 | 0.121 | Corvallis, Oregon (IRIS-OSU)         |  |  |  |  |  |
| DBO      | % | 43 07 09.0 | 123 14 34.0 | 0.984 | Dodson Butte, Oregon (UO CREST)      |  |  |  |  |  |
| GBB      |   | 46 36 31.8 | 119 37 40.2 | 0.185 | PNNL Station                         |  |  |  |  |  |
| H2O      |   | 46 23 45.0 | 119 25 22.0 | -     | Water PNNL Station                   |  |  |  |  |  |
| HAWA     |   | 46 23 32.3 | 119 31 57.2 | 0.367 | Hanford Nike USGS-USNSN              |  |  |  |  |  |
| HLID     |   | 43 33 45.0 | 114 24 49.3 | 1.772 | Hailey. ID USGS-USNSN                |  |  |  |  |  |
| KEB      |   | 42 52 20.0 | 124 20 03.0 | 0.818 | CAL-NET                              |  |  |  |  |  |
| KSX      |   | 41 49 51.0 | 123 52 33.0 | -     | CAL-NET                              |  |  |  |  |  |
| KTR      |   | 41 54 31.2 | 123 22 35.4 | 1.378 | CAL-NET                              |  |  |  |  |  |
| LAM      |   | 41 36 35.2 | 122 37 32.1 | 1.769 | CAL-NET                              |  |  |  |  |  |
| LCCM     |   | 45 50 16.8 | 111 52 40.8 | 1.669 | Lewis and Clark Caverns, MT          |  |  |  |  |  |
| MCMT     |   | 44 49 39.6 | 112 50 55.8 | 2.323 | McKenzie Canyon, MT                  |  |  |  |  |  |
| NEW      |   | 48 15 50.0 | 117 07 13.0 | 0.760 | Newport Observatory USNSN BB         |  |  |  |  |  |
| OCWA     |   | 47 44 56.0 | 124 10 41.2 | 0.671 | Octopus Mtn. (USGS-USNSN)            |  |  |  |  |  |
| OZB      |   | 48 57 37.1 | 125 29 34.1 | 0.671 | Canada                               |  |  |  |  |  |
| PFB      |   | 48 34 30.0 | 124 26 39.8 | 0.465 | P. Renfrew, Canada                   |  |  |  |  |  |
| PIN      | % | 43 48 40.0 | 120 52 19.0 | 1.865 | Pine Mt., Oregon (U0 CREST)          |  |  |  |  |  |
| PNT      |   | 49 18 57.6 | 119 36 57.6 | 0.550 | Canada, BB                           |  |  |  |  |  |
| RED      |   | 46 17 51.0 | 119 26 15.6 | 0.330 | Red Mountain PNNL Station            |  |  |  |  |  |
| SNB      |   | 48 46 33.6 | 123 10 16.3 | 0.408 | Canada                               |  |  |  |  |  |
| SNI      |   | 46 27 80.0 | 119 39 50.0 | -     | PNNL station                         |  |  |  |  |  |
| VDB      |   | 49 01 34.0 | 122 06 10.1 | 0.404 | Canada                               |  |  |  |  |  |
| VGZ      |   | 48 24 50.0 | 123 19 27.8 | 0.067 | Canada                               |  |  |  |  |  |
| WVOR     |   | 42 26 02.0 | 118 38 13.0 | 1.344 | Wildhorse Valley, Oregon (USGS-USNSN |  |  |  |  |  |

### **OUTREACH ACTIVITIES**

The PNSN Seismology Lab staff provides an educational outreach program to better inform the public, educators, businesses, policy makers, and the emergency management community about seismicity and natural hazards. Our outreach includes lab tours, lectures, classes and workshops, press conferences, TV and radio news programs and talk shows, field trips, and participation in regional earthquake planning efforts. We provide basic information through information sheets, an audio library, and the Internet on the World-Wide-Web (WWW):

### http://www.geophys.washington.edu/SEIS/PNSN

#### **Special Events**

- The magnitude 6.8 Nisqually earthquake generated many media activities for the PNSN. See the special section on Nisqually earthquake outreach activities, below.
- The PNSN assisted the Shoreline Historical Museum with an earthquake exhibit.
- Ruth Ludwin made presentations on Native American stories related to Cascadia Subduction Zone earthquakes at the Burke Museum and to the Olympic Peninsula Intertribal Cultural Advisory Committee.
- Steve Malone presented the PNSN perspective at a Tsunami meeting at the State EOC on Jan. 7, 2001.
- Steve Malone presented an invited plenary talk to the National Physics Society meeting in Seattle on March 12, 2001 called "Shake and Bake - The physics of earthquakes and volcanos in Seattle's backvard"
- On March 19-20, the UW hosted a 2-day workshop titled "Juan de Fuca Slab Earthquake Science and Hazards Appraisal". The workshop was convened by Ken Creager of the UW and Steve Kirby of the USGS and included discussion of the current state of knowledge of JDF slab structure and hazards, and upcoming, planned, and future active and passive seismic experiments. Although the workshop had been scheduled far in advance, the Nisqually Earthquake gave an added sense of purpose to the proceedings.

#### Press Interviews, Lab Tours, and Workshops

PNSN Staff provided a countless number of television, radio, or print press interviews this quarter following the Nisqually earthquake. The demand for K-12 educational outreach services continues to increase. This quarter, about 30 requests for tours and lectures were turned down due to a lack of staff and a three week moratorium on tours following the Nisqually earthquake. Despite these limitations this quarter, the PNSN staff provided 19 K-12 lab tours serving 475 students and escorts, 4 college classes with 65 students, one tour for State of Washington emergency managers, and one tour for the UW custodial services organization.

Normally we provide estimates of how many calls we respond to during the quarter from emergency management and government, from the media, from educators from the business community, and from the general public. However, this quarter we completely lost track of the numbers. A rough estimate would be that the number of calls was about 10 times the normal level (normally we get about 150 calls/month) in the month following the earthquake.

#### Telephone, Mail, and On-line outreach

The PNSN audio library system received about 1,400 calls this quarter, with calls up about 10-fold after the Nisqually earthquake. We provide several recordings. The most popular is a frequently updated message on current seismic activity. In addition we have a tape describing the seismic hazards in Washington and Oregon, and another on earthquake prediction. Callers often request our one-page information and resource sheet on seismic hazards in Washington and Oregon. Thousands of these have been mailed out or distributed, and we encourage others to reproduce and further distribute this sheet. Our information sheet discussing earthquake prediction is also frequently requested. Callers to the audio library can also choose to be transferred to the Seismology Lab, where additional information is available.

### Nisqually Earthquake Outreach Activities

The Nisqually earthquake at the end of February was the cause of many, many phone calls to our lab. In the hours following the earthquake, lab staff and student helpers shifted into high gear. Our top priority is to communicate with emergency managers and NEIC personnel, followed by media and regional organizations with critical need-to-know. We were very fortunate to have a well-trained crew of student helpers, including undergraduate (Erich Lenz, Graylan Vincent, John-Patrick Luethe, and Nate Jacobson) and graduate students (Guy Medema, Josh Jones, Adam Haulter, and Tom Van Wagoner). Two former student employees, Gerick Bergsma and Rob Willis, showed up to help although they were not currently working for the Seismology lab. Both had prior experience handling phone calls and assisting after significant local quakes in 1997 and 1999. The students provided basic information about the earthquake to numerous media contacts and screened and prioritized calls. Having personnel to handle basic phone contacts allowed us to return almost all of the telephone calls before the end of the day.

Press coverage ranged from local to national, including Larry King Live, MSNBC, and many others. Besides TV coverage, the PNSN gave interviews to a variety of radio programs and newspapers nationwide. On-camera interviews were provided by PNSN Staff, UW faculty (from Engineering as well as Earth Sciences), and USGS scientists. Individuals with expertise came to the UW Seismology Lab and made themselves available to the press. A lot of interviews were conducted in the hallways, and the congestion in the Lab itself was less than we have experienced in smaller past events. This was no doubt due to the dramatic damage photo opportunities available elsewhere. Emergency Operations Centers were activated throughout the regions andy many other state, county, and local agencies were providing information.

USGS and academic seismologists from outside the Puget Sound area relayed basic information about the earthquake to the press and public. At a time of overwhelming pressure on the local group, it is very helpful to have outside people who can provide valuable expertise and insights to meet the very intense demand.

Shortly after the Nisqually earthquake, an unfounded rumor of an earthquake prediction began to make the rounds, soon swelling into a minor panic. Many additional press contacts resulted, as we attempted to defuse the furor. The false rumors may have resulted from a pseudo-scientific pundit who put two true statements together in a way that invited misinterpretation (1. "A magnitude 9+ earthquake could occur in the PNW." 2. "My next prediction window is from March ?? to March ??").

Press interaction continued at high rates through the end of the quarter, although the focus of attention shifted from the PNSN to damage and ground failure issues. In addition, we responded to numerous strong-motion data requests from engineers.

Web-based outreach of the Nisqually earthquake is discussed in the the Seismicity section of this report.

### Internet outreach

The PNSN web-site offers many other web pages, including maps and lists of the most recent PNW earthquakes, general information on earthquakes and PNW earthquake hazards, information on past damaging PNW earthquakes, and catalogs of earthquake summary cards. Web-pages on seismicity of Cascade Volcanos, and Quarterly summaries of seismicity are also included. The PNSN recent earthquake list is available through the World-Wide-Web (WWW) at:

### http://www.geophys.washington.edu/SEIS/PNSN

"Webicorder" pages allow Web visitors (and us) to view continuous data from PNSN seismographic stations at:

### http://www.geophys.washington.edu/SEIS/PNSN/WEBICORDER/

ShakeMap generates maps showing instrumentally measured shaking effects. Table 3A indicates which events this quarter generated ShakeMaps.

### Shake Maps: http://spike.geophys.washington.edu/shake/index.html

Table 3A also indicates the felt events this quarter that generated Community Internet Intensity Maps (CIIM). CIIM maps are made using internet reports. For a well-felt event hundreds (or thousands) of people fill out an on-line form describing their experiences during the earthquake. These "felt" reports are converted into numeric intensity values, and the CIIM map shows the average intensity by zip code.

### CIIM Maps: http://pasadena.wr.usgs.gov/shake/pnw/

In addition to the PNSN web site, the UW Geophysics Program and the PNSN host several other earthquake-related web sites:

- Volcano Systems Center: http://www.vsc.washington.edu is a cooperative effort of the UW and the USGS that links volcano-related activities of the UW Geological Sciences, Geophysics, and Oceanography departments with related USGS activities.
- Seismosurfing: http://www.geophys.washington.edu/seismosurfing.html is a comprehensive listing of sites worldwide that offer substantive seismology data and information. This page is mirrored at two sites in Europe.
- The Council of the National Seismic Systems (CNSS): http://www.cnss.org features composite listings and maps of recent U.S. earthquakes, and documentation of the EARTHWORM system.
- "Tsunami!" : http://www.geophys.washington.edu/tsunami offers many pages, including an excellent discussion on the physics of tsunamis, and short movie clips. It was developed by Benjamin Cook under the direction of Dr. Catherine Petroff (UW Civil Engineering).

### • The UW Geophysics Program Global Positioning System (GPS):

http://www.geophys.washington.edu/GPS/gps.html site provides information on geodetic studies of crustal deformation in Washington and Oregon.

#### EARTHQUAKE DATA - 2001-A

There were 1,174 events digitally recorded and processed at the University of Washington between January 1 and March 31, 2001. Locations in Washington, Oregon, or southernmost British Columbia were determined for 628 of these events; 509 were classified as earthquakes and 119 as known or suspected blasts. The remaining 546 processed events include teleseisms (153 events), regional events outside the PNSN (58), and unlocated events within the PNSN. Unlocated events within the PNSN include very small earthquakes and some known blasts. Frequent mining blasts occur near Centralia, Washington and we routinely locate them.

Table 3A is a listing of all earthquakes reported to have been felt during this quarter. Table 3B is a listing of earthquakes magnitude 2.5 or greater with reasonably constrained focal mechanisms from P-wave first motions. Table 3C is a listing of the Nisqually earthquake and its aftershocks. Table 5, located at the end of this report, is this quarter's catalog of earthquakes M 2.0 or greater, located within the network -

- 11 -

between 42-49.5 degrees north latitude and 117-125.3 degrees west longitude.

Fig. 2 shows earthquakes with magnitude greater than or equal to 0.0 ( $M_c \ge 0$ ).

Fig. 3 shows blasts and probable blasts ( $M_c \ge 0$ ).

Fig. 4 shows earthquakes located near Mt. Rainier ( $M_c \ge 0$ ).

Fig. 5 shows earthquakes located at Mt. St. Helens  $(M_c \ge 0)$ .

Fig. 6 shows reasonably well-constrained focal mechanisms for earthquakes with M 2.5 this quarter.

| TABLE 3A - Felt Earthquakes during the 1st Quarter of 2001 |        |        |       |     |                                  |      |          |  |  |
|------------------------------------------------------------|--------|--------|-------|-----|----------------------------------|------|----------|--|--|
| DATE-(UTC)-TIME                                            | LAT(N) | LON(W) | DEPTH | MAG | COMMENTS                         | CIIM | ShakeMap |  |  |
| yy/mm/dd hh:mm:ss                                          | deg.   | deg.   | km    |     |                                  |      |          |  |  |
| 01/02/14 03:54:54                                          | 48.76  | 123.12 | 20.9  | 2.3 | 26.0 km NNW of Friday Harbor, WA |      | ÷        |  |  |
| 01/02/14 22:03:58                                          | 47.52  | 121.89 | 6.6   | 3.1 | 5.3 km S of Fall City, WA        | x    | x        |  |  |
| 01/02/24 07:40:50                                          | 47.54  | 122.07 | 22.6  | 2.2 | 13.2 km SE of Bellevue. WA       |      |          |  |  |
| 01/02/28 07:16:13                                          | 47.75  | 120.04 | 0.6   | 3.2 | 10.0 km S of Chelan, WA          | х    |          |  |  |
| 01/02/28 18:54:32                                          | 47.16  | 122.73 | 51.9  | 6.8 | 17.6 km NE of Olympia. WA        | x    | x        |  |  |
| 01/03/01 09:10:20                                          | 47.21  | 122.72 | 54.3  | 3.4 | 22.3 km NE of Olympia. WA        | x    |          |  |  |
| 01/03/01 14:23:34                                          | 47.19  | 122.74 | 51.4  | 2.7 | 19.4 km NE of Olympia. WA        |      |          |  |  |
| 01/03/10 06:26:05                                          | 47.49  | 122.81 | 19.3  | 1.7 | 15.9 km SW of Bremerton. WA      |      |          |  |  |
| 01/03/11 17:08:54                                          | 47.60  | 121.93 | 21.6  | 2.9 | 4.4 km NNW of Fall City, WA      |      |          |  |  |
| 01/03/16 02:41:11                                          | 47.57  | 122.09 | 18.2  | 2.2 | 10.2 km ESE of Bellevue, WA      |      |          |  |  |
| 01/03/21 10:31:05                                          | 46.22  | 121.03 | 0.9   | 2.9 | 35.8 km E of Mt. Adams, WA       |      |          |  |  |

TABLE 3B - Earthquakes M 2.5 or larger during the 1st Quarter of 2001

Focal mechanisms noted where computed. Some earthquakes have more than one possible mechanism.

| DATE-(UTC)-TIME   | LAT(N) | LON(W)  | DEP  | MAG | COMMENTS                        | STRIKE | DIP  | RAKE |
|-------------------|--------|---------|------|-----|---------------------------------|--------|------|------|
| yy/mm/dd hh:mm:ss | deg.   | deg.    | km   |     |                                 | deg.   | deg. | deg. |
| 01/01/24 18/47/39 | 48.26N | 120.16W | 0.6  | 2.8 | 44.6 km WSW of Okanogan. WA     | 35     | 30   | 100  |
| 01/02/14 22/03/58 | 47.52N | 121.90W | 6.6  | 3.1 | 5.4 km S of Fall City, WA       | 50     | 55   | 60   |
| 01/02/28 07/16/13 | 47.75N | 120.03W | 0.6  | 3.2 | 10.2 km S of Chelan, WA         | 275    | 90   | 90   |
|                   |        |         |      |     |                                 | 85     | 90   | 90   |
| 01/02/28 18/54/32 | 47.15N | 122.73W | 51.9 | 6.8 | 17.0 km NE of Olympia. WA       | 15     | 70   | -120 |
| 01/03/01 09/10/20 | 47.20N | 122.71W | 54.3 | 3.4 | 21.6 km NE of Olympia, WA       | 20     | 70   | -80  |
| 01/03/01 14/23/34 | 47.18N | 122.73W | 51.4 | 2.7 | 19.4 km NE of Olympia, WA       | 30     | 70   | -90  |
| 01/03/11 17/08/54 | 47.60N | 121.92W | 21.6 | 2.9 | 4.4 km NNW of Fall City, WA     | 20     | 60   | 50   |
| 01/03/17 19/55/47 | 46.07N | 122.10W | 6.1  | 2.5 | 16.0 km SSE of Mt St Helens, WA | 340    | 25   | -100 |
|                   |        |         |      |     |                                 | 205    | 70   | -70  |
| 01/03/21 10/31/05 | 46.21N | 121.03W | 0.9  | 2.9 | 35.4 km E of Mt Adams, WA       | 50     | 50   | 50   |

|                   |        | TABLE 3C | - Nisqually | Mainsho | ock and Aftershocks | 6                         |
|-------------------|--------|----------|-------------|---------|---------------------|---------------------------|
| DATE-(UTC)-TIME   | LAT(N) | LON(W)   | DEPTH       | MAG     |                     | COMMENTS                  |
| yy/mm/dd hh:mm:ss | deg.   | deg.     | km          |         |                     |                           |
| 01/02/28 18:54:32 | 47.14  | 122.72   | 51.9        | 6.8     | MAINSHOCK           | 17.0 km NE of Olympia, WA |
| 01/02/28 19:02:03 | 47.18  | 122.72   | 52.3        | 1.0     |                     | 19.7 km NE of Olympia. WA |
| 01/03/01 09:10:20 | 47.19  | 122.71   | 54.3        | 3.4     | FELT                | 21.6 km NE of Olympia, WA |
| 01/03/01 14:23:34 | 47.18  | 122.72   | 51.4        | 2.7     | FELT                | 19.4 km NE of Olympia, WA |
| 01/03/11 11:57:36 | 47.20  | 122.62   | 47.8        | 1.2     |                     | 14.9 km WSW of Tacoma, WA |

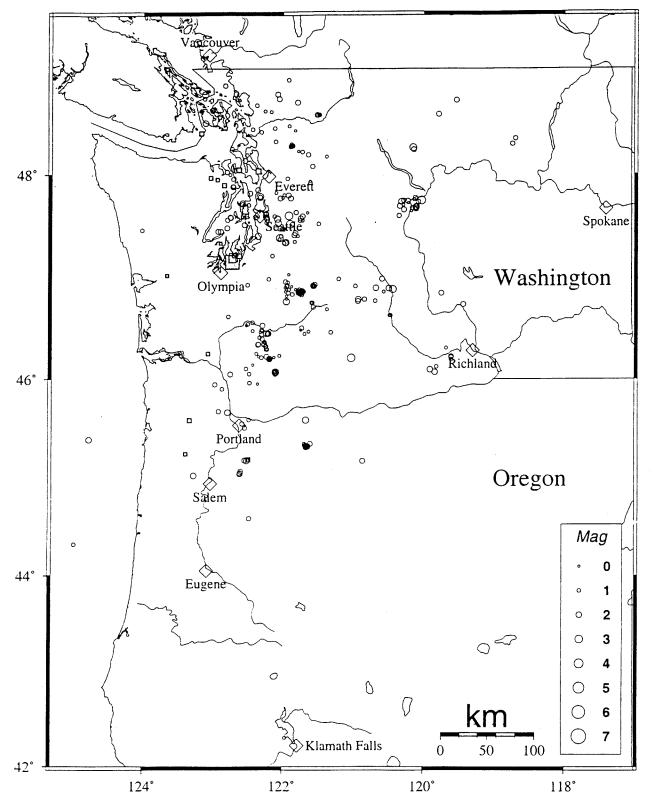



Figure 2. Located earthquakes, magnitude > 0, 1st quarter, 2001. Filled squares indicate earthquakes with depth greater than 30km. Unfilled diamonds represent cities.

- 13 -

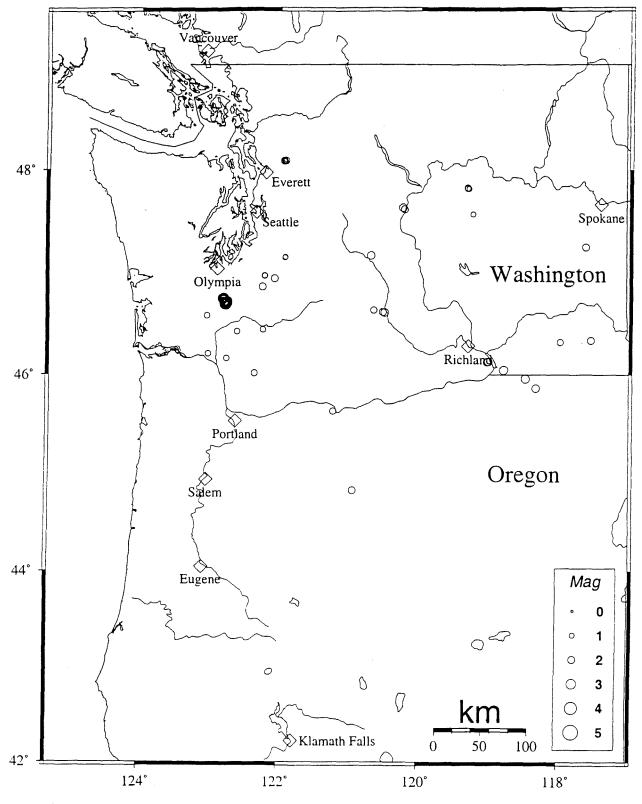



Figure 3. Blasts and probable blasts, 1st quarter, 2001. Unfilled diamonds represent cities.

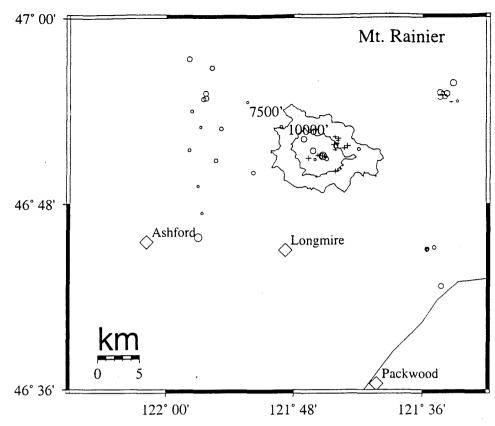



Figure 4. Earthquakes M > 0, 1st quarter, 2001. 'Plus' symbols indicate depth less than 1 km. Circles indicate depth greater than 1 km. Elevation contours shown in feet.

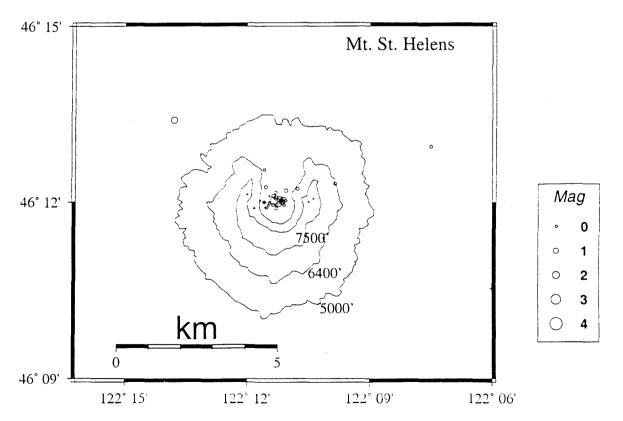
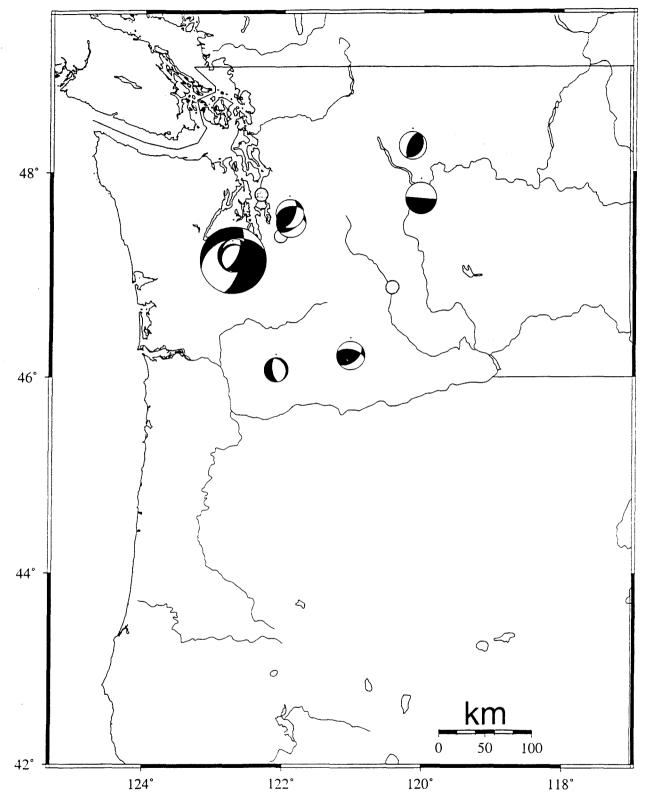




Figure 5. Earthquakes M > 0. 1st quarter, 2001. 'Plus' symbols indicate depth less than 1 km. Circles indicate depth greater than 1 km. Elevation contours shown in feet.



- 16 -

Figure 6. Events and fault plane solutions, 1st quarter 2001, Magnitude greater than or equal to 2.5. Focal symbol size reflects earthquake magnitude. Events without fault plane solutions are shown as filled dots. Table 3B lists event dates, locations, depths, magnitudes, and focal parameters.

#### **OREGON SEISMICITY**

During the first quarter of 2001, a total of 41 earthquakes were located in Oregon between 42.0° and 45.5° north latitude, and between 117° and 125° west longitude. The most interesting activity in Oregon this quarter was a swarm of events at Mt. Hood. The events began on January 10, 2001 and continued for most of the month of January. In total, between January 10-23, 2001, we recorded 24 earthquakes. The earthquakes were located approximately 5.0-8.0 km SSE of Mt. Hood at depths ranging from 3.0-7.0 km. The magnitudes of the earthquakes ranged from -0.8 to 2.0.

In the Klamath Falls area, only one earthquake occurred in the first quarter of 2001. Since 1994, most earthquakes in the Klamath Falls area have been considered aftershocks of a pair of damaging earthquakes in September of 1993. The 1993 earthquakes were followed by a vigorous aftershock sequence which decreased over time.

### WESTERN WASHINGTON SEISMICITY

During the first quarter of 2001, 416 earthquakes were located between 45.5° and 49.5° north latitude and between 121° and 125.3° west longitude. Nine earthquakes were felt this quarter in western Washington. Details are in Table 3. The 52 km deep, magnitude (Mw) 6.8 Nisqually earthquake on February 28, 2001 was the largest earthquake to occur in western Washington since 1949. The earthquake and its aftershocks are described in a special section of this report.

Other felt earthquakes this quarter include a M 2.3 earthquake on February 14, located about 26 km NNW of Friday Harbor, WA, and reported felt in Friday Harbor. Also on February 14, a M 3.1 felt earthquake occurred about 5.0 km S of Fall City, WA and was felt in Snoqualmie, Redmond, North Bend, Kirkland, Issaquah, Fall City, Duvall, and Carnation. On February 24 an earthquake located about 13 km SE of Bellevue, WA with a magnitude of 2.2 was reported felt in Bellevue and Kenmore.

Following the Nisqually earthquake, we received many felt reports for small earthquakes, either a result of heightened sensitivity of residents or a result of the public checking our website for recent earthquakes and then reporting them as felt. The first felt earthquake after the Nisqually earthquake and its aftershocks was a magnitude 1.7 which occurred on March 10 about 16 km SW of Bremerton, WA. This event was reported felt by residents in Port Orchard. On March 11, a magnitude 2.9 earthquake occurred about 4.0 km NNW of Fall City, WA and was felt by residents in North Bend. The last felt earthquake in western Washington for this quarter occurred on March 16 about 10 km ESE of Bellevue, WA. The magnitude 2.2 earthquake was reported felt by residents in Redmond. Details are in Table 3.

#### Special Report: The Mw 6.8 Nisqually Earthquake of February 28, 2001

The magnitude (Mw) 6.8 Nisqually earthquake occurred on February 28 at 1854 UTC (10:54 AM PST). It was located at a depth of 52 km beneath the Nisqually River delta about 18 km NE of Olympia, WA. The earthquake occurred in the eastward-dipping Wadati-Benioff zone within the subducting Juan de Fuca plate. This location was within 20 km of the magnitude 7.1 earthquake in 1949 and may have rup-tured the same fault. A similarly deep subduction zone earthquake occurred in 1965 about 40 km northeast of the Nisqually earthquake with a magnitude of 6.5.

For the PNSN, the Nisqually earthquake came at a good time. First of all, the time of day was convenient. The seismologists and PNSN staff were not far away, which made the response to the earthquake quick. Second, the timing was great because we had just completed the installation of 22 new real-time, strong motion seismographs in the summer of 2000. In January 2001, our main Earthworm data acquisition and processing system had been upgraded to a new machine. Also in January, the *ShakeMap* software was implemented and being run in test mode.

Fortunately for the PNSN, the power remained on during and after the earthquake. The seismology lab sustained no damage, even though other areas on the University of Washington campus did suffer earthquake damage, mostly non-structural.

The Earthworm automatic solution was sent out to pagers, e-mail, and RACE systems about five minutes after the earthquake. Unfortunately, the pagers that depend on telephone lines between the University of Washington and the paging service, including the RACE system, did not receive this preliminary solution. This is because the phone lines overloaded immediately after the earthquake. However, the

pagers that use e-mail between the University of Washington and the paging service worked fine. The preliminary location was very good, within two km of the later reviewed epicenter and within three km of the final depth. The preliminary magnitude, 4.7, was not accurate because the algorithm we use to determine preliminary magnitudes is a coda duration technique that does not work well for large earthquakes.

Immediately after the initial solution was released, a magnitude estimate of 6.7 was determined by running a brand-new earthworm module called *localmag*. This program was still in the process of being tested and calibrated. Therefore, we were not confident in releasing that magnitude. Instead we released, along with the verified solution, a magnitude of 6.2 within 50 minutes after the earthquake. This 6.2 magnitude was reported to us by the West Coast- Alaska Tsunami Warning Center. Within three hours after the earthquake, the magnitude was revised to Mw=6.8 after consultation with the NEIC.

Updated information was provided all day following the earthquake. Many interviews with the local media were given and the staff and students handled the phone lines, responding to calls from emergency managers, the media, and the public. Information about the earthquake was also available on the PNSN Web server (see additional details in outreach section). However, many computer users trying to connect experienced slow response time. The Web server volumes did increase immediately after the earthquake, but they did not get completely saturated until an hour later. Maximum hit rates were about 40 per second with about 500 simultaneous open sessions. One reason network usage was so heavy was due to people leaving open our webicorder pages, which automatically update every two minutes. Therefore, in addition to new people requesting pages on our web site, all other users who were looking at the webicorder pages were requesting another transfer every two minutes. For the future, when an event such as this occurs, we will make the webicorder reload interval larger. Also, to satisfy this huge demand, a Web delivery strategy of multiple servers on multiple networks is needed. This will be coordinated with other seismic networks in the U.S.

After any significant event, we automatically produce a standard "Special Event" directory and main web page. In the case of the Nisqually Earthquake the strengths and weaknesses of our "Special Event" web offerings became very clear. The notable strength of our "Special Event" format is that all of the files linked from our main page for the event reside in a single directory, with no links from any of the "Special" pages to other pages on our site. This format was quite helpful in the hours following the earthquake when we made a tar file of all the pages, and e-mailed it to the USGS Pasadena Office, which provided a mirror of these pages for a short time while our server was bogged down. The main weakness of our "Special Event" page was that it did not reflect recent changes, including good links to CIIM and ShakeMap pages. ShakeMap pages are currently outside the "Special Event" directory, and those pages would not have been included for mirroring. In the days following the earthquake, we added many links to our "Nisqually Earthquake" page as we monitored requests for information from our web users, and learned of useful web resources provided by other organizations.

Earthworm operation worked very well. All data exports worked well, although the West Coast-Alaska Tsunami Warning Center did not get hypocenter information for the Nisqually earthquake because one export module had died the night before on our back-up machine and went unnoticed. The only other problem was that our connection to Dittmer (Vancouver, WA) was lost for a short period after the earthquake.

Strong Motion recording of the Nisqually Earthquake: Table 6 gives peak ground accelerations and velocities recorded during the Nisqually earthquake. At the time of the Nisqually earthquake, data from 31 strong motion stations (ANSS strong motion instruments plus instruments installed previously) were available in real-time. Recovery of data from additional PNSN and USGS National Strong Motion Program (NSMP) stations has produced records from 91 sites within 100 km epicentral distance. These strong motion recordings were used to produce an instrumental intensity *ShakeMap*. A preliminary version of *ShakeMap*, which included data from the 31 real-time strong motion instruments, was available on the Web within one day of the earthquake. Revised versions became available as more data were recovered in the days and weeks following the earthquake. Strong motion waveforms were made available as ASCII files accessible via a Web browser the day following the earthquake.

We imported the code that produces *ShakeMap* web pages from the TriNet group in southern California during the last quarter of 2000, and finished the local implementation in January, 2001. We generated *ShakeMap* entries for a number of previous events; earthquakes in 1999 and 2000 with at least 10 strong motion records. The system was still being run in test mode when the Nisqually earthquake occurred on February 28 and, because of this, it took many hours to generate a valid *ShakeMap* for this event. Considerable help was received from the *ShakeMap* team in Pasadena and from staff of the National Strong Motion Program in Menlo Park. In the course of checking the results, some errors in our database of station calibration information were found and corrected. *ShakeMap* still does not properly take into account the unique attenuation relation for deep earthquakes in the Pacific Northwest nor does it yet run automatically from an automatic trigger.

Aftershocks of the Nisqually Earthquake: The PNSN recorded four aftershocks in the two weeks following the Nisqually earthquake. The first aftershock, M 1.0, occurred within the coda of the main shock and was located about three km north of the mainshock. The two largest aftershocks, M 3.4, and 2.7, occurred in the early morning hours of the day after the mainshock, at 1:10 AM local time (M 3.4, located about six km north and slightly deeper than the main shock) and 6:23 AM local (M 2.7). Both events were felt, the larger one quite widely. The last aftershock, M 1.2, occurred twelve days after the main shock. It was located about 13 km to the east-northeast of and four km shallower than the main shock. Details are given in Table 3C.

**Focal Mechanism of the Nisqually Earthquake:** The first-motion focal mechanism of the Nisqually Earthquake is described in Table 3B and shown on Figure 6. Fault-plane solutions for two largest aftershocks are similar to the mainshock solution, and all indicate normal faulting consistent with downdip extension in the subducted slab, with T axes trending eastward to east-southeastward.

### CASCADE VOLCANOS

**Mount Rainier Area:** Figure 4 shows earthquakes near Mount Rainier. The number of events in close proximity to the cone of Mt. Rainier varies over the course of the year, since the source of much of the shallow activity is presumably ice movement or avalanching at the surface, which is seasonal in nature. Events with very low frequency signals (1-3 Hz) believed to be icequakes are assigned type "L" in the catalog. Emergent, very long duration signals, probably due to rockfalls or avalanches, are assigned type "S" (see Key to Earthquake Catalog). There were 6 events flagged "L" or "S" that were located at Mount Rainier this quarter and an additional 144 "L" or "S" events were recorded, but were too small to locate reliably. "L" and "S" type events are listed in the catalog, but not shown in Fig. 4.

A total of 75 tectonic events (27 of these were smaller than magnitude 0.0, and thus are not shown in Fig. 4) were located within the region shown in Fig. 4. Of these, 22 were tectonic events located in the "Western Rainier Seismic Zone" (WRSZ), a north-south trending lineation of seismicity approximately 15 km west of the summit of Mt. Rainier (for counting purposes, the western zone is defined as 46.6-47 degrees north latitude and 121.83-122 west longitude). The largest tectonic earthquake located near Mt. Rainier this quarter was a magnitude 2.2 and was located about 0.5 km ESE of the summit at a depth of 1.5 km. This earthquake occurred on February 1, 2001.

This quarter, there were 29 (13 smaller than magnitude 0.0 and thus not shown in Fig. 4) higherfrequency tectonic-style earthquakes within 5 km of the summit. The remaining events were scattered around the cone of Rainier as seen in Fig. 4.

Mount St. Helens Area: Figure 5 shows volcano-tectonic earthquakes near Mount St. Helens. Low frequency (L) and avalanche or rockfall events (S) are not shown. This quarter, 112 earthquakes were located at Mount St. Helens in the area shown in Fig. 5. Of these earthquakes, 42 were magnitude 0.0 or larger and 8 were deeper than 4 km. The largest tectonic earthquake at Mount St. Helens this quarter was a magnitude 1.8 event located 0.3 km NE of Mount St. Helens.

One type "S" or "L" event was located at Mount St. Helens, and 11 "L" or "S" events too small to locate were recorded.

#### EASTERN WASHINGTON SEISMICITY

During the first quarter of 2001, 53 earthquakes were located in eastern Washington in the area described in Table 4. Two felt earthquakes occurred in the first quarter of 2001 in eastern Washington. The first, M 3.2, was located 10 km S of Chelan, WA on February 28 UTC (February 27 PST), and was felt by residents in Chelan and Manson.

Some dubious felt reports were received for a very shallow M 2.9 earthquake located about 36 km E of Mt. Adams on March 21. This earthquake was in a remote area of the Yakima Indian Reservation, and no felt reports were received from the nearby the event. However several felt reports, all from locations at considerable distance from the quake, were received via internet. Felt reports were received from Rock Island, Rainier, Enumclaw, Seattle, Bremerton, and Lynnwood although these locations are very far from the epicenter. Such improbable reports are likely due to nervousness and a heightened sensitivity to non-seismic vibrations following the Nisqually earthquake.

Times, locations, and depths of felt earthquakes in the PNSN region are given in Table 3. Table 4 is a summary table of various earthquake counts-per-quarter over several years.

### TABLE 4 Quarterly (Q) comparison of earthquake counts over several years.

"Total" events are all events located within the PNSN network area; between 42.0-49.5 degrees north latitude and 117-125.3 degrees west longitude. The smallest detectable earthquake varies over the region. "Total" events are subdivided into "Quakes", "Blasts" and "L or S"(low frequency or surficial). The remaining numbers are counts of tectonic (no L or S)earthquakes in western and eastern V.'ashington, and in Oregon. Western Washington earthquakes are those between 45.5 and 49.5 degrees north latitude and 121-125.3 degrees west longitude. Within western Washington, earthquakes counted as "Rainier" are between 46.6-47.0 degrees north latitude and 121.5-122.15 degrees west longitude (same area as Figure 4), and at Mt. St. Helens (MSH) counted events are between 46.15-46.25 degrees north latitude and 122.10-122.27 degrees west longitude (same area as Figure 5). "Eastern Washington" earthquake counts are for quakes between 45.5-49.5 degrees north latitude and 117-121 degrees west longitude. "Oregon" earthquakes are located between 42-45.5 degrees north latitude and 117-125 degrees west longitude.

| Year | Q | Total | Quakes | Blasts | L or S | western WA | MSH  | Rainier | eastern WA | OR  |
|------|---|-------|--------|--------|--------|------------|------|---------|------------|-----|
| 1996 | А | 504   | 433    | 70     | 1      | 302        | 82   | 55      | 53         | 75  |
|      | В | 967   | 860    | 103    | 4      | 748        | 68   | 54      | 39         | 72  |
|      | С | 696   | 535    | 152    | 9      | 417        | 83   | 66      | 45         | 67  |
|      | D | 476   | 381    | 89     | 6      | 306        | 65   | 53      | 45         | 29  |
| 1997 | A | 417   | 353    | 64     | 0      | 270        | 49   | 47      | 45         | 34  |
|      | В | 525   | 472    | 52     | 1      | 385        | 70   | 30      | 65         | 21  |
|      | С | 633   | 562    | 65     | 6      | 468        | 181  | 42      | 66         | 28  |
|      | D | 680   | 606    | 66     | 8      | 497        | 286  | 45      | 56         | 45  |
| 1998 | А | 692   | 636    | 53     | 3      | 475        | 293  | 33      | 57         | 106 |
|      | В | 1248  | 1180   | 65     | 3      | 1045       | 776  | 44      | 74         | 58  |
|      | С | 1728  | 1622   | 93     | 13     | 1450       | 1100 | 70      | 84         | 86  |
|      | D | 772   | 721    | 43     | 8      | 612        | 349  | 62      | 59         | 49  |
| 1999 | A | 475   | 449    | 25     | 1      | 247        | 122  | 15      | 50         | 148 |
|      | В | 465   | 404    | 60     | 1      | 275        | 133  | 30      | 45         | 83  |
|      | С | 593   | 493    | 87     | 13     | 379        | 134  | 33      | 55         | 58  |
|      | D | 661   | 607    | 50     | 4      | 391        | 147  | 48      | 62         | 153 |
| 2000 | A | 507   | 435    | 60     | 12     | 284        | 83   | 27      | 61         | 88  |
|      | В | 514   | 440    | 68     | 6      | 333        | 67   | 48      | 44         | 63  |
|      | С | 939   | 614    | 96     | 229    | 472        | 136  | 51      | 82         | 61  |
|      | D | 863   | 692    | 117    | 54     | 589        | 224  | 85      | 73         | 29  |
| 2001 | A | 628   | 509    | 119    | 7      | 416        | 111  | 75      | 53         | 41  |

# OTHER SOURCES OF EARTHQUAKE INFORMATION

We provide automatic computer-generated alert messages about significant Washington and Oregon earthquakes by e-mail, FAX or via the pager-based RACE system to institutions needing such information, and we regularly exchange phase data via e-mail with other regional seismograph network operators. The "Outreach Activities" section describes how to access PNSN data via e-mail. Internet, and World-Wide-Web. To request additional information by e-mail, contact seis\_info@geophys.washington.edu.

Earthquake information in the quarterlies has been published in final form by the Washington State Department of Natural Resources as information circulars entitled "Earthquake Hypocenters in Washington and Northern Oregon" covering the period 1970-1989 (see circulars Nos. 53, 56, 64-66, 72, 79, 82-84, and 89). These circulars, plus circular No. 85, "Washington State Earthquake Hazards", are available from Washington Dept. of Natural Resources, Division of Geology and Earth Resources, Post Office Box 47007, Olympia, WA. 98504-7007, or by telephone at (360) 902-1450.

Several excellent maps of Pacific Northwest seismicity are available. A very colorful perspectiveview map (18" x 27") entitled "Major Earthquakes of the Pacific Northwest" depicts selected epicenters of strong earthquakes (magnitudes > 5.1) that have occurred in the Pacific Northwest. A more detailed fullcolor map is called "Earthquakes in Washington and Oregon 1872-1993", by Susan Goter (USGS Open-File Report 94-226A). It is accompanied by a companion pamphlet "Washington and Oregon Earthquake History and Hazards", by Yelin, Tarr, Michael, and Weaver (USGS Open-File Report 94-226B). The pamphlet is also available separately. Maps can be ordered from: "Earthquake Maps", U.S. Geological Survey, Box 25046, Federal Center, MS 967, Denver, CO 80225, phone (303) 273-8477. The price of each map is \$12. (including US shipping and handling).

USGS Cascades Volcano Observatory has a video, "Perilous Beauty: The Hidden Dangers of Mount Rainier", about the risk of lahars from Mount Rainier. Copies are available through: North west Interpretive Association (NWIA), 909 First Avenue Suite 630, Seattle WA 98104, Telephon e: (206) 220-4141, Fax: (206) 220-4143.

Other regional agencies provide earthquake information. These include the Geological Survey of Canada (Pacific Geoscience Centre, Sidney, B.C.; (250) 363-6500, FAX (250) 363-6565), which produces monthly summaries of Canadian earthquakes; the US Geological Survey which produces weekly reports called "Seismicity Reports for Northern California" (USGS, attn: Steve Walter, 345 Middlefield Rd, MS-977, Menlo Park, CA, 94025) and "Weekly Earthquake Report for Southern California" (USGS, attn: Dr. Kate Hutton or Dr. Lucy Jones, CalTech, Pasadena, CA.).

## Key to Earthquake Catalog in Table 5

- TIME Origin time is calculated for each earthquake on the basis of multi-station arrival times. Time is given in Coordinated Universal Time (UTC), in hours:minutes:seconds. To convert to Pacific Standard Time (PST) subtract eight hours, or to Pacific Daylight Time subtract seven hours.
- LAT North latitude of the epicenter, in degrees and minutes.
- LONG West longitude of the epicenter. in degrees and minutes.
- **DEPTH** The depth, given in kilometers, is usually freely calculated from the arrival-time data. In some instances, the depth must be fixed arbitrarily to obtain a convergent solution. Such depths are noted by an asterisk (\*) in the column immediately following the depth. A \$ or a # following the depth mean that the maximum number of iterations has been exceeded without meeting convergence tests and both the location and depth have been fixed.
- MAG Coda-length magnitude M<sub>c</sub>, an estimate of local magnitude M<sub>L</sub> (Richter, C.F., 1958, Elementary Seismology: W.H. Freeman and Co., 768p), calculated using the coda-length/magnitude relationship determined for Washington (Crosson, R.S., 1972, Bull. Seism. Soc. Am., v. 62, p. 1133-1171). Where blank, data were insufficient for a reliable magnitude determination. Normally, the only earthquakes with undetermined magnitudes are very small ones. Magnitudes may be revised as we improve our analysis procedure.
- NS/NP NS is the number of station observations, and NP the number of P and S phases used to calculate the earthquake location. A minimum of three stations and four phases are required. Generally, more observations improve the quality of the solution.
- GAP Azimuthal gap. The largest angle (relative to the epicenter) containing no stations.
- **RMS** The root-mean-square residual (observed arrival time minus predicted arrival time) at all stations used to locate the earthquake. It is only useful as a measure of the quality of the solution when 5 or more well-distributed stations are used in the solution. Good solutions are normally characterized by **RMS** values less than about 0.3 sec.
- Q Two Quality factors indicate the general reliability of the solution (A is best quality. D is worst). Similar quality factors are used by the USGS for events located with the computer program HYPO71. The first letter is a measure of the hypocenter quality based on travel-time residuals. For example: A quality requires an RMS less than 0.15 sec while an RMS of 0.5 sec or more is D quality (estimates of the uncertainty in hypocenter location also affect this quality parameter). The second letter of the quality code depends on the spatial distribution of stations around the epicenter, i.e. number of stations, their azimuthal distribution, and the minimum distance (DMIN) from the epicenter to a station. Quality A requires a solution with 8 or more phases.  $GAP \le 90^{\circ}$  and  $DMIN \le (5 \text{ km or depth, whichever is greater})$ . If the number of phases, NP, is 5 or fewer or  $GAP > 180^{\circ}$  or DMIN > 50 km the solution is assigned quality D.
- MOD The crustal velocity model used in location calculations.
  - P3 Puget Sound model
  - C3 Cascade model
  - S3 Mt. St. Helens model including Elk Lake
  - N3 northeastern model
  - E3 southeastern model
  - O0 Oregon model
  - K3 Southern Oregon. Klamath Falls area model
  - R0 and J1 Regional and Offshore models
- **TYP** Events flagged in Table 5 use the following code:
  - F earthquake reported to have been felt
  - P probable explosion
  - L low frequency earthquake (e.g. glacier movement, volcanic activity)
  - H handpicked from helicorder records
  - S Special event (e.g. rockslide, avalanche, volcanic steam emission, harmonic tremor, sonic boorn), not a man-
  - made explosion or tectonic earthquake
    - X known explosion

# TABLE 5

Tectonic Earthquakes. Magnitude 2.0 or larger. First Quarter. 2001.

Within an area 42-49.5 degrees north latitude and 117-125.3 degrees west longitude.

|          | Jan 2001    |          |           |        |     |       |     |      |    |     |     |
|----------|-------------|----------|-----------|--------|-----|-------|-----|------|----|-----|-----|
| DAY      | TIME        | LAT      | LON       | DEPTH  | М   | NS/NP | GAP | RMS  | Q  | MOD | TYP |
| 12       | 11:57:26.75 | 45 40.18 | 122 47.70 | 20.20  | 2.0 | 37/40 | 53  | 0.10 | AA | C3  |     |
| 19       | 04:38:23.84 | 46 04.23 | 119 50.45 | 0.02*  | 2.0 | 20/22 | 166 | 0.20 | BC | E3  |     |
| 19       | 17:45:34.10 | 45 19.43 | 121 39.38 | 7.15*  | 2.0 | 16/17 | 78  | 0.27 | BB | 00  |     |
| 24       | 18:47:39.19 | 48 15.53 | 122 09.56 | 0.565  | 2.8 | 21/29 | 96  | 0.54 | DC | N3  |     |
| 26       | 08:18:38.03 | 46 21.43 | 122 16.47 | 13.76  | 2.1 | 36/38 | 66  | 0.20 | BA | S3  |     |
| 29       | 00:26:31.91 | 47 24.47 | 122 21.30 | 15.55  | 2.3 | 44/47 | 31  | 0.12 | AA | P3  |     |
|          |             |          |           |        |     |       |     |      |    |     |     |
| Feb 2001 |             |          |           |        |     |       |     |      |    |     |     |
| DAY      | TIME        | LAT      | LON       | DEPTH  | М   | NS/NP | GAP | RMS  | Q  | MOD | TYP |
| 1        | 03:32:19.86 | 46 51.15 | 121 45.45 | 1.45   | 2.2 | 40/45 | 51  | 0.13 | AA | C3  |     |
| 1        | 05:30:48.70 | 45 23.37 | 124 46.38 | 17.36* | 2.0 | 08/09 | 280 | 0.52 | DD | 00  |     |
| 6        | 09:01:11.38 | 46 53.65 | 120 26.55 | 8.15   | 2.5 | 15/16 | 62  | 0.22 | BB | E3  |     |
| 6        | 09:01:27.26 | 46 54.17 | 120 30.37 | 17.02  | 2.1 | 08/10 | 170 | 0.30 | BC | E3  |     |
| 12       | 10:46:46.74 | 48 29.17 | 123 07.22 | 25.72  | 2.1 | 18/20 | 127 | 0.25 | BB | P3  |     |
| 14       | 03:54:54.90 | 48 45.63 | 123 07.43 | 20.85  | 2.3 | 16/16 | 189 | 0.15 | BD | P3  | F   |
| 20       | 06:22:07.75 | 47 47.20 | 122 20.10 | 24.41  | 2.5 | 46/47 | 36  | 0.15 | BA | P3  |     |
| 24       | 07:40:50.75 | 47 32.47 | 122 04.15 | 22.58  | 2.2 | 44/46 | 68  | 0.22 | BA | P3  | F   |
| 24       | 11:14:22.22 | 46 46.33 | 121 57.58 | 3.44   | 2.2 | 33/38 | 60  | 0.17 | BC | C3  |     |
| 28       | 07:16:13.18 | 47 45.07 | 120 02.37 | 0.57   | 3.2 | 29/30 | 47  | 0.27 | BB | N3  | F   |
| 28       | 18:54:32.83 | 47 09.57 | 122 44.00 | 51.90  | 6.8 | 66/66 | 31  | 0.20 | BA | P3  | F   |
|          |             |          |           |        |     |       |     |      |    |     |     |
|          |             |          |           | Mar 2  | 001 |       |     |      |    |     |     |
| DAY      | TIME        | LAT      | LON       | DEPTH  | Μ   | NS/NP | GAP | RMS  | Q  | MOD | TYP |
| 1        | 09:10:20.93 | 47 12.37 | 122 43.33 | 54.31  | 3.4 | 83/86 | 31  | 0.27 | BA | P3  | F   |
| 1        | 14:23:34.37 | 47 11.35 | 122 44.27 | 51.39  | 2.7 | 54/57 | 55  | 0.18 | BA | P3  | F   |
| 6        | 06:33:40.00 | 47 20.73 | 121 57.87 | 22.99  | 2.2 | 30/32 | 54  | 0.21 | BA | P3  |     |
| 9        | 03:36:30.24 | 45 35.37 | 121 40.30 | 8.57   | 2.3 | 29/32 | 77  | 0.23 | BB | C3  |     |
| 9        | 20:45:58.41 | 47 23.28 | 122 03.23 | 12.47  | 2.5 | 38/40 | 32  | 0.19 | BA | P3  |     |
| 11       | 17:08:54.12 | 47 36.20 | 121 55.52 | 21.61  | 2.9 | 54/54 | 85  | 0.17 | BA | P3  | F   |
| 11       | 22:19:67.14 | 47 37.57 | 122 14.83 | 3.25   | 2.0 | 19/22 | 94  | 0.15 | AB | P3  |     |
| 14       | 14:42:22.44 | 46 47.20 | 120 56.17 | 6.56   | 2.1 | 20/23 | 50  | 0.15 | BB | C3  |     |
| 16       | 02:41:11.07 | 47 34.32 | 122 05.18 | 18.15  | 2.2 | 32/35 | 47  | 0.13 | AA | P3  | F   |
| 16       | 16:46:55.90 | 46 06.10 | 119 54.60 | 0.02*  | 2.1 | 18/18 | 82  | 0.30 | BC | E3  |     |
| 17       | 19:55:47.44 | 46 04.27 | 122 06.62 | 6.09*  | 2.5 | 29/32 | 65  | 0.13 | AB | S3  |     |
| 21       | 10:31:05.93 | 46 13.05 | 121 01.85 | 0.865  | 2.9 | 58/72 | 35  | 0.31 | CC | C3  | F   |

| See Tables 2B and 2C for station locations. |      |      |         |         |  |  |
|---------------------------------------------|------|------|---------|---------|--|--|
| STA                                         | СОМР | Dist | PGA     | PGV     |  |  |
|                                             |      | (km) | (%g)    | cm/sec) |  |  |
| MURR                                        | ELE  | 12   | 5.7621  | 5.4440  |  |  |
| MURR                                        | ELN  | 12   | 4.4534  | 2.8727  |  |  |
| MURR                                        | ELZ  | 12   | 10.8793 | 2.1103  |  |  |
| UPS                                         | ELE  | 22   | 5.5066  | 7.4585  |  |  |
| UPS                                         | ELN  | 22   | 6.0686  | 5.6492  |  |  |
| UPS                                         | ELZ  | 22   | 5.4854  | 2.4324  |  |  |
| PCFR                                        | ELE  | 28   | 11.0287 | 13.1767 |  |  |
| PCFR                                        | ELN  | 28   | 13.0824 | 7.0978  |  |  |
| PCFR                                        | ELZ  | 28   | 14.0885 | 4.1459  |  |  |
| PCEP                                        | ELE  | 33   | 20.3869 | 13.4826 |  |  |
| PCEP                                        | ELN  | 33   | 21.3314 | 10.4620 |  |  |
| PCEP                                        | ELZ  | 33   | 15.4756 | 6.0600  |  |  |
| KIMR                                        | ELE  | 39   | 16.2800 | 9.5761  |  |  |
| KIMR                                        | ELN  | 39   | 15.0155 | 8.7221  |  |  |
| KIMR                                        | ELZ  | 39   | 7.0458  | 3.8006  |  |  |
| PCMD                                        | ELE  | 43   | 15.7629 | 9.4342  |  |  |
| PCMD                                        | ELN  | 43   | 11.0448 | 7.0103  |  |  |
| PCMD                                        | ELZ  | 43   | 6.7582  | 3.5916  |  |  |
| GNW                                         | SLE  | 46   | 15.9131 | 3.9985  |  |  |
| GNW                                         | SLN  | 46   | 8.1006  | 4.2376  |  |  |
| GNW                                         | SLZ  | 46   | 6.1948  | 4.2376  |  |  |
| RBEN                                        | ELE  | 51   | 10.9706 | 8.2590  |  |  |
| RBEN                                        | ELN  | 51   | 10.9340 | 7.4443  |  |  |
| RBEN                                        | ELZ  | 51   | 4.5480  | 2.8960  |  |  |
| HOLY                                        | ELE  | 53   | 6.7837  | 5.5279  |  |  |
| HOLY                                        | ELN  | 53   | 7.9608  | 7.6551  |  |  |
| HOLY                                        | ELZ  | 53   | 5.1697  | 4.9389  |  |  |
| TKCO                                        | ELE  | 53   | 27.2808 | 21.8842 |  |  |
| TKCO                                        | ELN  | 53   | 17.0435 | 13.5065 |  |  |
| ТКСО                                        | ELZ  | 53   | 7.7742  | 6.6995  |  |  |
| MPL                                         | ELE  | 54   | 9.7708  | 7.3443  |  |  |
| MPL                                         | ELN  | 54   | 8.1218  | 7.7945  |  |  |
| MPL                                         | ELZ  | 54   | 4.9519  | 3.5493  |  |  |
| KIMB                                        | ELE  | 57   | 13.5246 | 18.2652 |  |  |
| KIMB                                        | ELN  | 57   | 9.2460  | 10.9508 |  |  |
| KIMB                                        | ELZ  | 57   | 4.7102  | 7.0607  |  |  |
| SP2                                         | ELE  | 57   | 30.7736 | 20.1153 |  |  |
| SP2                                         | ELN  | 57   | 18.9968 | 13.2044 |  |  |
| SP2                                         | ELZ  | 57   | 11.7024 | 5.6010  |  |  |
| KITP                                        | ELE  | 59   | 4.8238  | 5.6193  |  |  |
| KITP                                        | ELN  | 59   | 4.9300  | 7.4803  |  |  |
| KITP                                        | ELZ  | 59   | 2.6688  | 5.2385  |  |  |
| RHAZ                                        | ELE  | 59   | 4.5409  | 4.1628  |  |  |
| RHAZ                                        | ELN  | 59   | 3.9331  | 4.4836  |  |  |
| RHAZ                                        | ELZ  | 59   | 3.6510  | 1.7393  |  |  |
|                                             | -    |      | 2.0010  |         |  |  |

 TABLE 6
 PGA and PGV for Feb. 28, 2001 Nisqually Earthquake

 Ordered by distance from epicenter

| qually | EQ PGA ar | nd PGV |
|--------|-----------|--------|
| AP     | Dist      |        |
|        | (km)      | (%     |
|        | 29        |        |
|        | 29        |        |
|        | 29        |        |
|        | 60        | 1      |
|        | 60        | 1      |
|        | <b>~</b>  |        |

| STA  | СОМР | Dist | PGA     | PGV     |
|------|------|------|---------|---------|
| 0111 | 00   | (km) | (%g)    | cm/sec) |
| TBPA | ELE  | 29   | 6.3899  | 10.8881 |
| TBPA | ELN  | 29   | 6.4892  | 9.2587  |
| TBPA | ELZ  | 29   | 4.6574  | 5.1942  |
| QAW  | ELE  | 60   | 10.4653 | 8.3897  |
| QAW  | ELN  | 60   | 11.4009 | 11.8705 |
| QAW  | ELZ  | 60   | 7.6529  | 6.3960  |
| LAWT | ELE  | 62   | 10.4470 | 14.1014 |
| LAWT | ELN  | 62   | 8.8907  | 12.1953 |
| LAWT | ELZ  | 62   | 5.0959  | 3.5384  |
| RAW  | ELE  | 63   | 17.2692 | 16.9713 |
| RAW  | ELN  | 63   | 12.4685 | 10.6601 |
| RAW  | ELZ  | 63   | 5.5912  | 4.3713  |
|      | ELZ  | 65   | 3.5447  | 3.0676  |
| SEA  |      | 65   | 7.0610  | 7.3752  |
| SEA  | ELN  |      |         | 7.4367  |
| SEA  | ELE  | 65   | 6.7194  | 10.1150 |
| WISC | ELE  | 65   | 11.3350 |         |
| WISC | ELN  | 65   | 9.4362  | 6.6778  |
| WISC | ELZ  | 65   | 3.4447  | 3.0764  |
| RWW  | SLE  | 66   | 7.5285  | 5.8512  |
| RWW  | SLN  | 66   | 6.2679  | 4.2860  |
| RWW  | SLZ  | 66   | 4.3369  | 4.2861  |
| KINR | ELE  | 67   | 7.5468  | 4.9980  |
| KINR | ELN  | 67   | 4.9383  | 6.5310  |
| KINR | ELZ  | 67   | 3.1434  | 2.7611  |
| NOWS | ELE  | 70   | 7.9761  | 9.8671  |
| NOWS | ELN  | 70   | 8.7143  | 9.7131  |
| NOWS | ELZ  | 70   | 2.8744  | 3.8580  |
| PNLK | ELE  | 71   | 3.4272  | 4.8039  |
| PNLK | ELN  | 71   | 5.2579  | 4.2815  |
| PNLK | ELZ  | 71   | 3.6240  | 3.3475  |
| FINN | ELE  | 73   | 4.2829  | 4.1484  |
| FINN | ELN  | 73   | 5.0782  | 8.4859  |
| FINN | ELZ  | 73   | 2.9933  | 2.2145  |
| BRKS | ELE  | 75   | 7.7101  | 7.6893  |
| BRKS | ELN  | 75   | 10.3843 | 10.9947 |
| BRKS | ELZ  | 75   | 4.5837  | 2.4127  |
| ALCT | ELE  | 75   | 3.4694  | 5.1120  |
| ALCT | ELN  | 75   | 3.5982  | 5.2421  |
| ALCT | ELZ  | 75   | 2.9485  | 4.1967  |
| ELW  | ELE  | 75   | 5.6345  | 4.1192  |
|      | ELN  | 75   | 5.5387  | 4.0568  |
| ELW  |      | 75   |         | 2.5077  |
| ELW  | ELZ  | 75   | 3.4791  | 1.2520  |
| ELW  | HHE  |      | 5.5937  |         |
| ELW  | HHN  | 75   | 5.1238  | 1.2643  |
| ELW  | HHZ  | 75   | 3.5170  | 1.2208  |
| CSEN | ELE  | 82   | 3.0000  | 3.1717  |
| CSEN | ELN  | 82   | 3.2249  | 5.1696  |
| CSEN | ELZ  | 82   | 1.7990  | 1.9915  |

V, continued TABLE 6: Nise

|       |       |       | ·       |         |
|-------|-------|-------|---------|---------|
| STA   | COMP  | Dist  | PGA     | PGV     |
|       |       | (km)  | (%g)    | cm/sec) |
| LEOT  | ELE   | 82    | 6.3702  | 6.3091  |
| LEOT  | ELN   | 82    | 7.5394  | 4.5621  |
| LEOT  | ELZ   | 82    | 3.9979  | 2.5002  |
| EARN  | ELE   | 83    | 5.7923  | 4.6989  |
| EARN  | ELN   | 83    | 4.7226  | 4.2047  |
| EARN  | ELZ   | 83    | 2.0057  | 1.8106  |
| LON   | SLZ   | 83    | 1.5992  | 1.7097  |
| LON · | SLN · | 83    | 2.8322  | 1.6087  |
| LON   | SLE   | 83    | 3.7477  | 2.7262  |
| TTW   | SLE   | 99    | 11.1794 | 8.4884  |
| TTW   | SLN   | 99    | 9.1473  | 5.2555  |
| TTW   | SLZ   | 99    | 7.1435  | 3.4471  |
| MBPA  | ELE   | 104   | 12.0099 | 5.2956  |
| MBPA  | ELN   | 104   | 15.4664 | 4.8905  |
| MBPA  | ELZ   | 104   | 4.9960  | 1.4898  |
| SQM   | BHE   | 106   | 1.9576  | 1.1260  |
| SQM   | BHN   | 106   | 1.3091  | 1.1531  |
| SOM   | BHZ   | 106   | 1.0024  | 0.8925  |
| ALST  | ELE   | 119   | 6.0839  | 4.8109  |
| ALST  | ELN   | 119   | 7.5772  | 5.1293  |
| ALST  | ELZ   | 119   | 2.3699  | 1.7748  |
| ERW   | ELE   | 145   | 0.9461  | 0.8639  |
| ERW   | ELN   | 145   | 0.8498  | 0.6474  |
| ERW   | ELZ   | 145   | 0.8471  | 0.7151  |
| ERW   | HHE   | 145   | 0.9507  | 0.8889  |
| ERW   | HHN   | 145   | 0.7971  | 0.5869  |
| ERW   | HHZ   | 145   | 0.7997  | 0.6414  |
| POSS  | ELE   | 166   | 1.8721  | 1.2357  |
| ROSS  | ELN   | 166   | 2.5431  | 1.2719  |
| ROSS  | ELZ   | 166   | 1.3269  | 0.6439  |
| KEEL  | ELE   | 179   | 1.4429  | 2.3138  |
| KEEL  | ELN   | 179 . | 1.3636  | 1.8225  |
| KEEL  | ELZ   | 179   | 0.7195  | 0.9027  |
| SBES  | ELE   | 181   | 0.6301  | 0.6421  |
| SBES  | ELN   | 181   | 0.5017  | 0.5225  |
| SBES  | ELZ   | 181   | 0.4800  | 0.3448  |
| LANE  | ELZ   | 347   | 0.0595  | 0.1365  |
| LANE  | ELN   | 347   | 0.0856  | 0.2216  |
| LANE  | ELE   | 347   | 0.0856  | 0.2414  |
| ALVY  | ELZ   | 351   | 0.0557  | 0.1205  |
| ALVY  | ELN   | 351   | 0.1153  | 0.2953  |

TABLE 6: Nisqually EQ PGA and PGV, continued

## QUARTERLY NETWORK REPORT 2001-B on Seismicity of Washington and Oregon

April 1 through June 30, 2001

Pacific Northwest Seismograph Network Dept. of Earth and Space Sciences Box 351650 University of Washington Seattle, Washington 98195-1650

This report is prepared as a preliminary description of the seismic activity in Washington State and Oregon. Information contained in this report should be considered preliminary, and not cited for publication without checking directly with network staff. The views and conclusions contained in this document should not be interpreted as necessarily representing the official policies, either express or implied, of the U.S. Government.

Seismograph network operation in Washington and Oregon is supported by the following contracts:

U.S. Geological Survey Joint Operating Agreement 01-HQ-AG-0011

and

Pacific Northwest National Laboratory, operated by Battelle for the U.S. Dept. of Energy Contract 259116-A-B3

# CONTENTS

| Introduction2                                         |
|-------------------------------------------------------|
| Network Operations                                    |
| Strong Motion Instrument Update                       |
| CREST Instrument Update                               |
| Temporary stations installed in Spokane               |
| Other news about stations, operations, and personnel5 |
| Data Recording and EARTHWORM Update                   |
| Stations used for locations                           |
| Outreach Activities                                   |
| Earthquake Data                                       |
| Oregon Seismicity                                     |
| Western Washington Seismicity                         |
| Cascade Volcanos                                      |
| Mount Rainier Area17                                  |
| Mount St. Helens Area                                 |
| Eastern Washington Seismicity17                       |
| Further Information                                   |
| Key to Earthquake and Blast Catalog                   |
| Earthquake and Blast Catalog, Events M 2.0 or larger  |

# **FIGURES**

| 1. | Map of seismometer stations operating in 2001 2nd quarter                    | 3 |
|----|------------------------------------------------------------------------------|---|
|    | . Map of Puget Sound area seismometer stations operating in 2001 2nd quarter |   |
|    | Map showing selected epicenters for 2001 2nd quarter                         |   |
|    | Map showing blasts and probable blasts for 2001 2nd quarter                  |   |
|    | Map showing Mt. Rainier epicenters for 2001 2nd quarter                      |   |
|    | Map showing Mt. St. Helens epicenters for 2001 2nd quarter                   |   |
|    | Map showing fault-plane solutions for events >2.5 magnitude                  |   |

# TABLES

| 1A. Station outages and Installations for 2nd quarter 2001       | 6 |
|------------------------------------------------------------------|---|
| 1B. Temporary Spokane stations installed 2nd quarter 2001        |   |
| 2A. Short-period Stations operating at end of 2nd quarter 2001   |   |
| 2B. Broad-band Stations operating at end of 2nd quarter 2001     | 9 |
| 2C. Strong-motion Stations; operating at end of 2nd quarter 2001 |   |
| 3A. Felt earthquakes                                             |   |
| 3B. Earthquakes M 2.5. Focal mechanisms indicated, if computed   |   |
| 3C. Earthquakes located near Spokane, 2nd quarter 2001           |   |
| 4. Catalog of earthquakes and blasts for 2nd quarter 2001        |   |

#### **INTRODUCTION**

This is the second quarterly report of 2001 from the University of Washington Dept. of Earth and Space Sciences *Pacific Northwest Seismograph Network* (PNSN), covering seismicity of Washington and western Oregon.

Comprehensive quarterlies have been produced by the PNSN since the beginning of 1984. Prior to that we published quarterly reports for western Washington in 1983 and for eastern Washington from 1975 to 1983. Annual technical reports covering seismicity in Washington since 1969 are available from the U.W. Dept. of Earth and Space Sciences. Beginning in 1999, the quarterly PNSN catalog listing changed; earthquakes smaller than magnitude 2.0 are no longer listed in the quarterly reports. The complete PNSN catalog is available on-line, both through our web-site and through the CNSS catalog. We will continue to provide special coverage (figures, counts, listings, etc.) of earthquake swarms, aftershock sequences, etc.

This quarterly report discusses network operations, seismicity of the region, unusual events or findings, and our educational and outreach activities. This report is preliminary, and subject to revision. The PNSN routinely records signals from selected stations in adjoining networks. This improves our ability to locate earthquakes at the edges of our network. However, our earthquake locations may be revised if new data become available, such as P and S readings from Canadian seismograph stations. Findings mentioned in these quarterly reports should not be cited for publication.

### **NETWORK OPERATIONS**

Figure 1A shows a map view of stations operating during the quarter. Figure 1B is a more detailed view of stations in the Puget Sound area. Table 1A gives approximate periods of time when individual stations were inoperable. Data for Table 1A are compiled from weekly plots of network-wide teleseismic arrivals and automated and manual digital and analog signal checks, plus records of maintenance and repair visits.

This quarter was a busy one, as we prepared for an ambitious season of strong-motion and CREST station installations. Details of these installations are given below.

### Strong Motion Instrumentation and Recording Update

The PNSN strong-motion team is in the process of installing twenty additional ANSS strong-motion instruments in the greater Puget Sound Region. By the end of the second quarter the siting process was largely complete, and three new strong-motion stations (HICC, PAYL, and RRHS) were installed and operational. In addition, station MARY, at Marymoor Park in Redmond, was installed at a trial location without GPS timing to test the reliability of the Internet telemetry.

In the second quarter of 2001, we upgraded to *ShakeMap* version 2.1, and began revising maps from previous events.

### **CREST Instrument Update**

Station TTW at Tolt Reservoir in the Puget Sound area, formerly a 3-component broad-band, was reinstalled as a CREST station in January of last quarter with Internet telemetry through the Seattle Water Department's fiber-optic network. For about a year before that, the GPS clock at TTW had been drifting, leading to timing problems with picks on TTW. Some site improvements are still underway at TTW to lessen exposure to cultural noise.

Two CREST (Consolidated Reporting of EarthquakeS and Tsunamis) stations were installed this quarter; in Eugene Oregon (station EUO, telemetered through UO), and at Peninsula College (station OPC) in Port Angeles, WA.

One of the CREST stations slated for installation this summer was temporarily installed in Spokane (SPUD) in late June to record an unusual swarm of earthquake activity right in the Spokane urban area.

The Bonneville Power Administration (BPA) has agreed to site and provide telemetry for four CREST stations at BPA power substations near the coast (3 along the Oregon coast, and one in southwestern Washington).

The Washington State Patrol has agreed to provide a site and part of the telemetry path for a CREST station at Boistfort Peak in southwestern Washington. However, the telemetry between the terminus of the

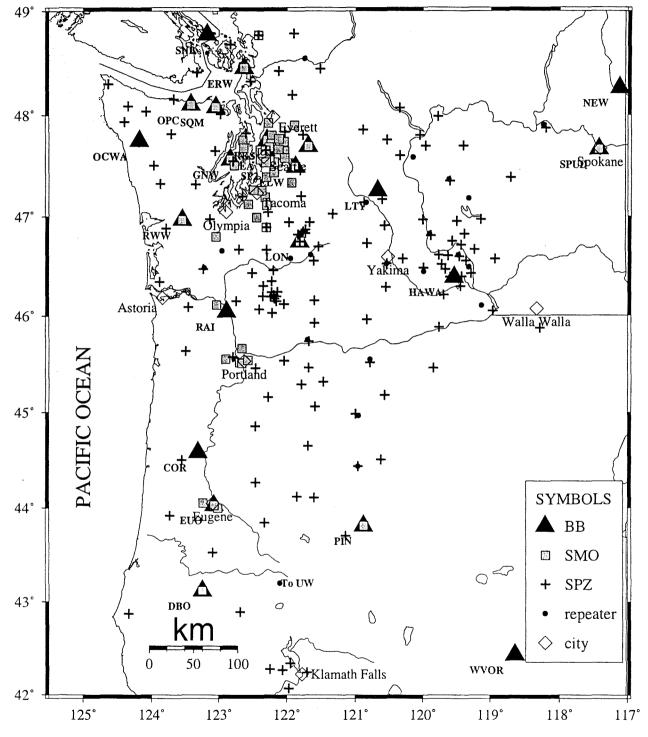
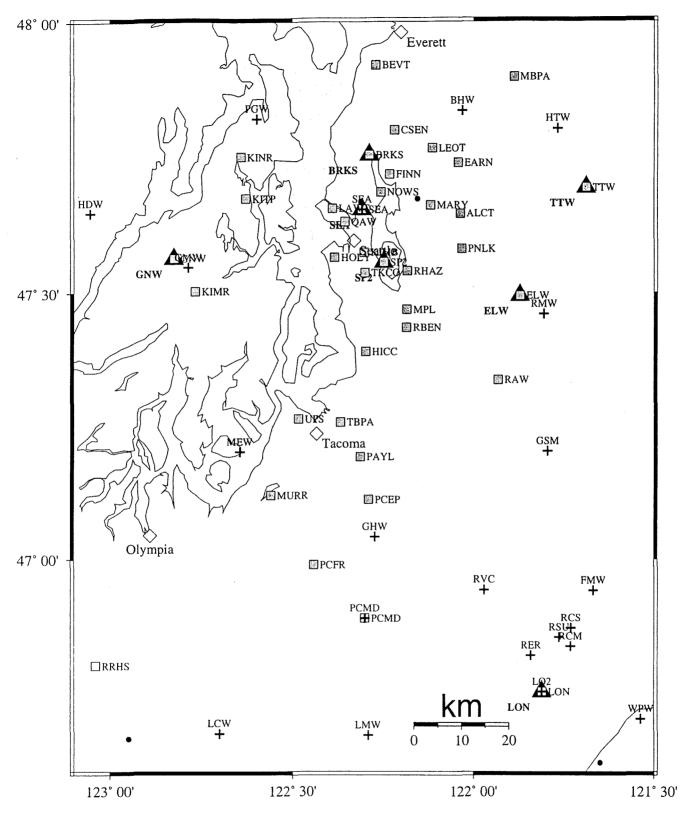




Figure 1A. Stations operating at the end of 2nd quarter, 2001. Stations shown are short period vertical (SP), 3-component broadband (BB), or strong motion (SMO).

- 3 -



- 4 -

Figure 1B. Stations operating at the end of 2nd quarter, 2001. Detail of Figure 1A.

State Patrol/Dept of Transportation communication system and the University of Washington is still being worked out.

### Temporary stations installed in Spokane

Following unusual seismicity in the Spokane urban area, Tom Yelin of the USGS, and UW graduate students Guy Medema and Josh Jones installed five short-period three-component PASSCAL instruments in a perimeter around Spokane. Temporary Spokane station locations are listed in Table 1B. All sites were located at private residences. No prior permissions had been given so sites were found by knocking on doors and asking. In general, residents were very willing to allow instruments to be placed on their property, including the use of their line power. The PASSCAL stations recorded continuously, but had no telemetry. One instrument was installed to the north of downtown Spokane on the evening of 6/30/01. Three others to the south, west and east were installed on 7/1/01. The last station was installed further to the north on 7/2/01. These five stations were set to 100 samples/sec and 16-bit. Stations 1,2 and 3 had gain = 128 x.

Station SPUD (also temporary) is a CREST-type station, with 3 BB components and 3 strong-motion components. It is located at the Public Utilities Bldg., was installed on June 26, and has Internet telemetry.

#### Other news about stations, operations, and personnel

Jim Ramey, our head electronics engineer, retired at the end of April. Jim started working with seismic recording equipment at the UW in the mid 1970s. Jim kicked off his retirement with some substantial relaxation but, lucky for us, his expertise will continue to be available on a part-time basis. We conducted a national search for a replacement network engineer, and were fortunate to attract the interest of Erwin McPherson Jr., who previously worked at the the University of Utah in a capacity similar to Jim Ramey's. Erwin will be starting work in September.

Amy Lindemuth, who works on the installation and maintenance of the strong motion stations, was hired as a permanent employee (research scientist) back in January of last quarter. In other "Amy" news, our data analyst (also a research scientist), previously known as Amy Tieman is now Amy Wright following her marriage this quarter. Congratulations to both Amys!

A new three-component short-period station (HUO) became operational in early July at Husband, OR following the report (in May) of ground uplift about 5 km west of South Sister volcano in the Three Sisters region of the central Oregon Cascade Range. A "Three Sisters" link has been added to the PNSN "Cascade Volcano Information" page to provide links to research and daily updates on seismicity in the area. The Three Sisters region generally has very low seismicity. The closest short-period station to the area, TCO, was repaired at the beginning of July. The seismometer was replaced. Prior to the repair, the station had been marginal for some time, but the low rate of activity makes it difficult to pinpoint a failure date. TCO is a noisy site, located in trees next to a road, it is also a target (as in "target practice") for vandalism.

In other station news, a new station is planned in the Cascades near Glacier Peak. A preliminary trip to scout out possible sites was made last fall, and this quarter further scouting was done during an airplane flight. In Oregon station news, short-period station BRO was installed to replace FBO, which had become shaded by overgrowth. Station VRC, in southern Oregon, was removed due to vandalism. A new site will be sought to replace VRC.

### Data Recording and EARTHWORM Update

This quarter, *scossa* remained our main EARTHWORM machine, with *milli* serving as our primary backup and *verme* as the secondary backup. *Milli* and *verme* still serve as the principal computers for data acquisition for many of the digital stations. We are currently running EARTHWORM-V5.1.

The SUNWORM digitizer for our primary system, *waggles*, went down form almost 24 hours on April 30-May 1. Data from analog systems was not digitized. However, no events were noted on the helicorder records during that time period. Since that time, there have been no additional problems with the waggles digitizter. The SUNWORM digitizer for *wiggles*, our backup system, began to have problems last year, and in the first quarter of this year we received an official EARTHWORM digitizer from the central EARTHWORM team. This quarter, we worked on the wining configuration needed for the new digitizer.

|         | TABLE 1A         |                                                                 |  |  |  |
|---------|------------------|-----------------------------------------------------------------|--|--|--|
|         | Station Outages, | Repairs, and Installations 2nd quarter 2001                     |  |  |  |
| Station | Outage Dates     | Comments                                                        |  |  |  |
| BOW     | 12/01/00-End     | Intermittent, mostly dead                                       |  |  |  |
| BRO     | 5/16/01          | INSTALLED (used to be FBO)                                      |  |  |  |
| ELL     | 3/16/01-End      | Intermittent, mostly dead                                       |  |  |  |
| EUO     | 4/18/01          | Eugene, Oregon: INSTALLED (CREST)                               |  |  |  |
| HUO     | 7/07/01          | Husband, Oregon: INSTALLED (3-component short-period)           |  |  |  |
| HICC    | 6/27/01          | INSTALLED (SMO)                                                 |  |  |  |
| JUN     | 4/01/01-End      | Noisy, intermittent                                             |  |  |  |
| LMW     | 2/28/01-5/9/01   | Dead - Improved spontaneously with better weather               |  |  |  |
| MARY    | 6/10/01          | INSTALLED (SMO)                                                 |  |  |  |
| NLO     | 12/1/00-End      | Dead                                                            |  |  |  |
| OPC     | 6/14/01          | INSTALLED (CREST)                                               |  |  |  |
| PAYL    | 6/28/01          | INSTALLED (SMO)                                                 |  |  |  |
| RCS     | 5/01/01-End      | Dead                                                            |  |  |  |
| RRHS    | 6/20/01          | INSTALLED (SMO)                                                 |  |  |  |
| RSU     | 9/30/00-End      | Dead                                                            |  |  |  |
| SSO     | 9/00-End         | Intermittent, mostly dead                                       |  |  |  |
| SPUD    | 6/26/01          | INSTALLED CREST-type station, Temporary installation in Spokane |  |  |  |
| TCO     | 5/1/00??-7/1/01  | Repaired, seismometer replaced                                  |  |  |  |
| TKO     | 1/4/99-End       | REMOVED                                                         |  |  |  |
| TTW     | 1/1/00-1/26/01   | Time Drifting due to GPS problems                               |  |  |  |
| TTW     | 1/26/01          | REINSTALLED AS A CREST STATION                                  |  |  |  |
| VRC     | 10/1/00-End      | REMOVED VCO was shot with a gun, pulled out 11/2/00             |  |  |  |
| VT2     | 4/01/01-End      | Noisy, intermittent                                             |  |  |  |
| WPW     | 5/15/01-End      | Dead                                                            |  |  |  |

| TABL | E 1B - Te | mporary sta | tions i | installed | in the | Spokane A | rea |
|------|-----------|-------------|---------|-----------|--------|-----------|-----|
|      |           |             |         |           |        |           |     |
| STA  | IAT       | LONG        | EL.     | NAME      |        |           |     |

| STA  | LAT        | LONG        | EL | NAME                                |
|------|------------|-------------|----|-------------------------------------|
| SPUD | 47 39 54.3 | 117 25 35.2 | -  | Spokane County Pub Works, temporary |
| SPK1 | 47 44 02.2 | 117 25 53.2 | -  | Spokane Temp 6047                   |
| SPK2 | 47 42 11.2 | 117 19 16.0 | -  | Spokane Temp 6127                   |
| SPK3 | 47 38 36.2 | 117 22 55.2 | -  | Spokane Temp 6132                   |
| SPK4 | 47 41 28.8 | 117 30 36.0 | -  | Spokane Temp 6085                   |
| SPK5 | 47 46 46.3 | 117 27 49.8 | -  | Spokane Temp 6128                   |

### STATIONS USED FOR LOCATION OF EVENTS

Table 2A lists short-period, mostly vertical-component stations used in locating seismic events in Washington and Oregon. The first column in the table gives the 3-letter station designator, followed by a symbol designating the funding agency; stations marked by a percent sign (%) were supported by USGS joint operating agreement 01-HQ-AG-0011. A plus (+) indicates support under Pacific Northwest National Laboratory, Battelle contract 259116-A-B3. Stations designated "#" are USGS-maintained stations recorded at the PNSN. Stations designated by letters are operated by other networks, and telemetered to the PNSN. "M" stations are received from the Montana Bureau of Mines and Geology, "C" stations from the Canadian Pacific Geoscience Center, "U" stations from the US Geological Survey (usually USNSN stations), "N" stations from the USGS Northern California Network, and "H" stations from the Hanford Reservation via the Pacific Northwest National Labs. Other designation indicate support from other sources. Additional columns give station north latitude and west longitude (in degrees, minutes and seconds), station elevation in km, and comments indicating landmarks for which stations were named.

Table 2B lists broad-band stations used in locating seismic events in Washington and Oregon, and Table 2C lists strong-motion stations.

| TABLE 2 | 2A - Short-j | period Station | s operated by | the PNSN | during the second quarter 2001 |
|---------|--------------|----------------|---------------|----------|--------------------------------|
| STA     | F            | LAT            | LONG          | EL       | NAME                           |
| ASR     | %            | 46 09 09.9     | 121 36 01.6   | 1.357    | Mt. Adams - Stagman Ridge      |
| AUG     | %            | 45 44 10.0     | 121 40 50.0   | 0.865    | Augspurger Mtn                 |
| BBO     | %            | 42 53 12.6     | 122 40 46.6   | 1.671    | Butler Butte, Oregon           |
| BEN     | Н            | 46 31 12.0     | 119 43 18.0   | 0.335    | PNNL station                   |
| BHW     | %            | 47 50 12.6     | 122 01 55.8   | 0.198    | Bald Hill                      |
| BLN     | %            | 48 00 26.5     | 122 58 18.6   | 0.585    | Blyn Mt.                       |
| BOW     | %            | 46 28 30.0     | 123 13 41.0   | 0.870    | Boistfort Mt.                  |
| BPO     | %            | 44 39 06.9     | 121 41 19.2   | 1.957    | Bald Peter, Oregon             |
| BRO     | %            | 44 16 02.5     | 122 27 07.1   | 0.135    | Big Rock Lookout, Oregon       |
| BRV     | +            | 46 29 07.2     | 119 59 28.2   | 0.920    | Black Rock Valley              |
| BSMT    | М            | 47 51 04.8     | 114 47 13.2   | 1.950    | Bassoo Peak, MT                |
| BUO     | %            | 42 16 42.5     | 122 14 43.1   | 1.797    | Burton Butte, Oregon           |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |            | TABLE 2A cont | linuea |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|------------|---------------|--------|---------------------------|
| PYW         +         46 48 39.5         119 52 56.4         0.607         Deverly           CDF         %         46 07 01.4         122 02 23.0         1.067         Chean Butte, South           CDW         %         46 54.10         113 15 07.0         -         Chamberlain Mu, MT           CMW         %         48 25 25.8         122 30 21.0         0.620         Carzy Man ML.           CCWW         %         48 25 25.8         122 30 21.0         0.620         Carzy Man ML.           CCWW         %         48 25 25.8         122 00 20.0         1292         Carria         MML.           DPW         +         47 59 06.6         119 46 16.8         0.890         Dyer Hill 2         Empore the state           DY2         +         47 59 06.6         119 46 16.8         0.809         Dyer Hill 2         Empore the state           DY2         +         47 59 06.6         119 40 10 35 36.8         0.270         Empore the state         Empore the state           DY2         +         47 50 15.6         120 90 00         0.455         Empore the state         Empore the state           ELH         +         46 57 06.9         119 29 40.0         0.455         Frenchmas Hills East         FIL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STA |    | LAT        | LONG          | EL     | NAME                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |            |               |        |                           |
| CIDF         %         46 07 01.4         122 02 42.1         0.756         Cedar Flats           CHMT         M         46 54 51.0         113 15 07.0         Chamberlain MM.         C           CMW         %         48 25 253         122 30 21.0         0.620         Crazy Man ML.           CPW         %         46 83 25.8         123 06 110.8         0.790         Carbiol Peak           CPW         %         46 18 20.0         122 02 7.0         12.70         ELK         6.009         Darbort           DYY         +         47 59 05.6         119 45 16.8         0.890         Dyer Hil 2         Deprecember 200         Dyer Hil 2           DYY         +         47 59 05.6         123 05 35.8         0.609         East Dome, Mt. 5t. Helens           ELL         +         46 34 38.4         118 56 15.0         0.208         Elenshurg         Errit           FT3         +         46 38 34.4         118 70 12.2         10.0         1378         Fila Top 2           FWW         %         46 56 29.6         124 01 1.3         1839         Mt. Fremont           GBL         +         46 35 54.0         119 97 452.0         0.300         Gabbe Mountain           GBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |            |               |        |                           |
| CHM         M         46 54 51.0         113 15 70.0         -         Chamberlain Mm, MT           CMM         %         46 52 07.0         122 07 10.4         1.190         Cultus Mms.           CPW         %         46 52 13.0         120 07 10.4         1.190         Cultus Mms.           CPW         *         46 52 10.0         113 13 12.1         0.180         Cultus Mms.           CPW         *         46 52 10.0         113 12 10.2         0.180         Deprecedent           DY12         *         47 59 06.6         119 46 16.8         0.890         Dyper Hill 2           EDM         %         46 11 80.0         122 20 27.0         1.270         Elk Rock           ELL         +         46 54 34.8         118 56 15.0         0.285         Elensburg           ETT         +         46 57 05.9         19 29 40.0         0.455         Frenama Hills East           FLZ         %         46 11 470.0         122 21 01.0         0.455         Frenama Hill East           FLZ         %         46 33 31.0         122 22 10 .0         0.286         Garison Hill           GBL         +         46 35 31.8         119 37 40.2         0.300         Gabee Mountain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |            |               |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |            |               |        |                           |
| $ \begin{array}{c} CMW & 9; & 46 25 25.3 \\ CPW & 6; & 46 58 25.8 \\ CRF & + & 46 49 30.0 \\ CRF & + & 46 49 30.0 \\ PPW & + & 47 59 14.3 \\ CRF & + & 47 59 06.6 \\ 119 46 10.8 \\ P2 & 0.890 \\ Dyer Hill 2 \\ Dyer Hill 2 \\ Dyer Hill 2 \\ ELL & 7; & 44 64 44.8 \\ 120 23 55 8.8 \\ OT 89 \\ Ellensburg \\ ELL & 7; & 44 65 44.8 \\ 122 20 20 0.0 \\ 1670 \\ EPH & + & 47 21 22.8 \\ 119 35 45.6 \\ OF 48 \\ OF 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |            |               |        |                           |
| $ \begin{array}{c} CPW & \% & 46 58 25.8 \\ CRF & + 64 69 30.0 \\ PVW & + 47 52 14.3 \\ PVW & + 47 52 14.3 \\ PVW & + 47 55 14.3 \\ PVW & + 47 55 14.3 \\ PVW & + 47 55 14.3 \\ PVW & + 47 50 66. \\ PVW & + 47 51 24.3 \\ PVW & + 47 21 22.8 \\ PVW & + 47 21 22.8 \\ PVW & + 47 36 15.6 \\ PVW & + 46 50 6.9 \\ PVW & + 47 36 15.6 \\ PVW & + 46 35 34.8 \\ PVW & + 47 36 55.6 \\ PVW & + 46 35 34.8 \\ PVW & + 47 36 55.6 \\ PVW & + 46 35 34.8 \\ PVW & + 46 35 34.8 \\ PVW & + 46 35 34.8 \\ PVW & + 46 35 34.0 \\ PVW & + 46 35 34.0 \\ PVW & + 47 02 300 \\ PVW & + 47 02 300 \\ PVW & + 47 02 300 \\ PVW & + 47 22 22.4 \\ PVW & + 46 35 34.0 \\ PVW & + 46 35 37.6 \\ PVW & + 46 32 37.6 \\ PVW & + 46 23 57.0 \\ PVW & + 46 23 57.0 \\ PVW & + 46 23 450 \\ PVW & + 47 12 11.4 \\ PVW & + 46 22 450 \\ PVW & + 47 12 11.4 \\ PVW & + 46 23 450 \\ PVW & + 47 31 13.4 \\ PVW & + 46 23 450 \\ PVW & + 47 31 13.4 \\ PVW & + 46 23 450 \\ PVW & + 47 31 13.7 \\ PVW & + 46 23 450 \\ PVW & + 47 31 13.7 \\ PVW & + 47 48 14.2 \\ PVW & + 46 23 450 \\ PVW & + 47 38 44.7 \\ PVW & + 46 23 450 \\ PVW & + 47 48 14.2 \\ PVW & + 46 23 450 \\ PVW & + 47 48 14.2 \\ PVW & + 46 23 450 \\ PVW & + 46 40 128 \\ PVW & + 46 40 14 \\ PVW & + 46 40 174 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        |                           |
| $ \begin{array}{c} \hline CRF & + & 46 \ 49 \ 30.0 & 119 \ 23 \ 13.2 & 0.189 \\ DFW & + \ 47 \ 55 \ 14.3 & 118 \ 12 \ 10.2 & 0.892 \\ DY2 & + & 47 \ 55 \ 0.66 & 119 \ 46 \ 16.8 & 0.890 \\ DY2 & + & 47 \ 55 \ 0.66 & 119 \ 46 \ 16.8 & 0.890 \\ DY2 & + & 47 \ 55 \ 0.66 & 119 \ 46 \ 16.8 & 0.890 \\ ELK & \% & 46 \ 18 \ 20.0 & 122 \ 20 \ 70.0 & 1.270 \\ ELK & \% & 46 \ 18 \ 20.0 & 122 \ 20 \ 70.0 & 1.270 \\ ELK & + \ 46 \ 54 \ 48 \ 123 \ 35 \ 88 \ 0.780 \\ EPH & + & 47 \ 71 \ 21 \ 22.8 & 119 \ 35 \ 45.6 & 0.661 \\ EPhrate & + \ 47 \ 71 \ 22 \ 21 \ 61.0 & 0.267 \\ EPH & + & 47 \ 47 \ 47 \ 47 \ 47 \ 47 \ 47 \ 47$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |            |               |        |                           |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | %  |            |               |        |                           |
| $ \begin{array}{c} \ddot{p} \dot{r} \dot{r} \\ \dot{p} $ | CRF | +  |            |               |        |                           |
| EDM         %         46         11         50.4         122         09         1.609         East Dome, M. St. Helens           ELL         *         46         53         34.8         120         35         85.6         0.789         Ellensburg           ETH         +         47         22.3         119         54         56.6         0.661         Elropia (replaces ET2)           ETW         +         47         51         51.0         0.286         Elropia (replaces ET2)           FHE         +         46         55.60         119         29.40.0         0.4357         Frenchman Hills East           FHZ         *         46         56.61         12.19         74.0.2         0.185         PNNL Sation           GBL         +         46         55.40         12.19         74.0.2         0.108         Gable Mountain           GHW         %         47         02.20.0         12.21         63.43         1.305         Glace Take           GL2         +         45         57.7.0         12.13         54.0         1.389         Grazyl Mountain, Oregon           GMW         %         47         32.52.7         12.21         13.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DPW | +  |            |               |        |                           |
| ELK         %         46 18 20.0         122 02 37.0         1.270         Elk Rock           EPH         +         47 21 22.8         119 35 45.6         0.661         Ephrata           ET3         +         46 34 38.4         119 35 45.6         0.286         Elkopia (replaces ET2)           ETW         +         47 36 15.6         120 19 56.4         1.477         Entiat           FHE         +         46 57 06.9         122 10 1.0         1.378         Flat Top 2           FWW         %         46 65 20.6         122 10 1.0         1.378         Flat Top 2           GBB         H         46 53 54.0         1.22 10 53.4         0.185         Gammonia           GRW         %         46 53 54.0         1.22 16 53.4         0.085         Gammonia           GRW         %         47 37 2.2.5         1.069         Gammonia         Gammonia           GRW         %         47 2 12 1.3 64 3.1         1.030         Gammonia         Glacier Lake           GMO         %         44 26 20.8         1.20 37 22.3         1.689         Gill and         Gill and           GBW         %         47 12 1.14         1.21 47 40.2         1.305         Grass Mt.         Group ont<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DY2 |    | 47 59 06.6 |               |        |                           |
| ELL         +         46 54 34.8         120 33 58.8         0.789         Ellensburg           ET3         +         46 34 38.4         118 35 65.0         0.286         Elopia (replaces ET2)           ETW         +         46 57 06.9         119 29 49.0         0.455         Frenchman Hills East           FH2         *         46 61 147.0         122 21 01.0         1.378         Flat Top 2           FMW         %         46 56 29.6         121 40 11.3         1.859         Mt. Fremont           GBB         H         46 56 31.8         119 37 40.2         0.835         Giarcian Antiona           GHW         +         47 02 30.0         122 16 21.0         0.268         Garrison Hill           GL2         +         45 57 35.0         120 49 22.5         1.000         New Goldendale           GLMW         %         47 32 52.5         122 47 10.8         0.506         Gold Mt.           GUL         %         45 35 57.0         121 55 44.0         1.189         Guier Mt.           H2D         H         46 3 24 60         123 05 12.5         124 91 19.9         1.031           H2D         H         46 3 24 60         123 05 12.5         1.041         Haus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EDM | %  | 46 11 50.4 | 122 09 00.0   |        | East Dome, Mt. St. Helens |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ELK | %  | 46 18 20.0 |               |        |                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ELL | +  | 46 54 34.8 |               |        | Ellensburg                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPH | +  | 47 21 22.8 | 119 35 45.6   | 0.661  |                           |
| FHE+46 57 06.9119 29 49.00.455Frenchman Hills EastFL2%% 64 11 47.0122 21 10.01.378Flat Top 2FMW%46 56 29.6121 40 11.31.859MK. FremontGBL+46 35 51.40119 27 35.40.330Gable MountainGHU%70 23.00122 16 21.00.228Garrison HillGL2+45 57 35.0120 49 22.51.000New GoldendieGLW%47 32 52.5122 47 10.80.566Gald Mt.GSM%47 12 32.7121 35 40.21.000New GoldendieGMU%47 32 52.5122 47 10.80.566Gald Mt.GSM%47 12 32.7121 42 20.51.877Hamker Mt. OregonHDOH46 20 40 8.3121 91 911.615Huckberry Mt. OregonHBO%47 38 34.6123 05 12.21.006HoodsportHOW%47 38 34.6123 05 12.21.006HoodsportHDW%47 48 14.2121 46 03.50.833Haystack LookoutHSO%47 38 51.0122 19 00.30.4611.020JDN%46 08 30.0122 09 04.41.049June LakeKEBN45 22 20.01.287Haystack LookoutHSO%43 38.0123 29 22.20.975Kings Mt. OregonJDN%46 08 30.0122 09 04.41.049June LakeKEBN45 27 20.0123 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ET3 | +  | 46 34 38.4 | 118 56 15.0   | 0.286  | Eltopia (replaces ET2)    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ETW | +  | 47 36 15.6 | 120 19 56.4   |        | Entiat                    |
| FMW%46 56 29.6121 40 11.31.859Mf. FreinontGBL+46 36 31.8119 37 40.20.185PNNL StationGBL+46 35 34.0119 27 35.40.330Gable MountainGHW%47 02 30.0122 16 21.00.2260.226Gabre MountainGL2+45 57 35.0120 49 22.51.000New GoldendaleGMO%44 26 20.8121 35 34.31.305Glacie LakeGMW%47 32 52.5122 47 10.80.506Gold Mt.GSM%47 12 11.4121 47 40.21.305Grass Mt.GUL%45 55 27.0121 35 44.01.189Guier Mt.H2OH46 23 45.0119 25 22.0-Water PNNL StationHAM%42 04 08.3121 58 16.01.999Hamaker ML. OregonHBO%43 50 39.5122 19 11.91.615Huckleberry ML. OregonHBO%42 36 31 33.0123 05 24.01.020Hamsex Mountain. OregonHSR%46 10 28.0122 10 46.01.720South Ridge, Mt. St. HelensHTW%44 48 114 27121 55 31.10.792Jim CreekJIN%46 10 83 00.122 09 04.41.049June LakeCAL>NETK84 07.0122 09 04.41.049June LakeKOS%46 17 46.7123 13 13.30.645Jordan Bute, OregonJIN%46 18 10.0122 09 04.41.049June Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FHE | +  | 46 57 06.9 | 119 29 49.0   | 0.455  | Frenchman Hills East      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FL2 | %  | 46 11 47.0 | 122 21 01.0   | 1.378  | Flat Top 2                |
| GBB         H         46 36 31.8         119 37 40.2         0.185         PNNL Station           GHL         +         46 35 54.0         119 27 354.0         0.330         Gable Mountain           GHW         %         47 02 300         122 16 21.0         0.268         Garrison Hill           GLL         +         45 57 35.0         120 49 22.5         1.000         New Goldendale           GLK         %         46 33 37.6         121 36 34.3         1.305         Glacier Lake           GMO         %         47 32 52.5         122 47 10.8         0.506         Gold Mt.           GUL         %         45 55 27.0         121 35 44.0         1.305         Grass Mt.           GUL         %         45 55 27.0         121 35 44.0         1.305         Hottom           HAM         %         42 04 08.3         121 58 16.0         1.999         Hamaker Mt., Oregon           HBO         %         47 38 36.4         123 03 15.2         1.006         Hoodsport           HDW         %         47 48 14.2         121 46 03.5         0.333         Haystack Lookout           HSC         %         45 01 28.0         122 19 04.4         1.049         June Lake <t< td=""><td></td><td>%</td><td>46 56 29.6</td><td>121 40 11.3</td><td>1.859</td><td>Mt. Fremont</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | %  | 46 56 29.6 | 121 40 11.3   | 1.859  | Mt. Fremont               |
| CHIW         %         47 02 30.0         122 16 21.0         0.268         Garrison Hill           GL2         +         45 57 35.0         120 49 22.5         1.000         New Goldendale           GIAC         %         46 33 27.6         121 36 34.3         1.305         Glacier Lake           GMO         %         44 26 20.8         120 57 22.3         1.689         Grizzly Mountain, Oregon           GMMW         %         47 32 52.5         122 47 10.8         0.506         Gold Mt.           GUL         %         45 55 27.0         121 35 44.0         1.189         Guler Mt.           H2O         H         46 23 45.0         119 25 22.0         -         Water PNNL Station           HAM         %         42 04 08.3         121 58 16.0         1.999         Hamaker Mt., Oregon           HBO         %         43 31 33.0         122 05 1.878         Hogback Mm., Oregon           HSR         %         46 10 28.0         122 05 51.5         2.071         Husband OR (UO)           HSR         %         46 10 28.0         122 05 51.5         2.037         Husband OR (UO)           JDW         %         47 81.4.2         121 46 03.5         0.833         Haystack Lookout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GBB | Н  | 46 36 31.8 | 119 37 40.2   | 0.185  | PNNL Station              |
| CHIW         %         47 02 30.0         122 16 21.0         0.268         Garrison Hill           GL2         +         45 57 35.0         120 49 22.5         1.000         New Goldendale           GIAC         %         46 33 27.6         121 36 34.3         1.305         Glacier Lake           GMO         %         44 26 20.8         120 57 22.3         1.689         Grizzly Mountain, Oregon           GMMW         %         47 32 52.5         122 47 10.8         0.506         Gold Mt.           GUL         %         45 55 27.0         121 35 44.0         1.189         Guler Mt.           H2O         H         46 23 45.0         119 25 22.0         -         Water PNNL Station           HAM         %         42 04 08.3         121 58 16.0         1.999         Hamaker Mt., Oregon           HBO         %         43 31 33.0         122 05 1.878         Hogback Mm., Oregon           HSR         %         46 10 28.0         122 05 51.5         2.071         Husband OR (UO)           HSR         %         46 10 28.0         122 05 51.5         2.037         Husband OR (UO)           JDW         %         47 81.4.2         121 46 03.5         0.833         Haystack Lookout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |            |               |        | Gable Mountain            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |            |               |        | Garrison Hill             |
| GLX         %         46 33 27.6         121 36 34.3         1.305         Glacier Lake           GMO         %         44 26 20.8         120 57 22.3         1.689         Grizzy Mountain, Oregon           GMW         %         47 12 11.4         121 47 40.2         1.305         Grass Mt.           GUL         %         45 55 27.0         121 35 44.0         1.189         Guler Mt.           HAM         %         42 04 08.3         121 58 16.0         1999         Hamaker ML. Oregon           HBO         %         47 36 35 39.2         121 91 19         1.615         Huckbehery ML. Oregon           HBO         %         47 36 34.2         122 03 15.2         1.006         Hoodsport           HOO         %         42 13 13.0         122 10 46.0         1220         Hamaker ML. Oregon           HSN         %         46 10 28.0         122 10 46.0         1200         Hamase Mountain, Oregon           HSN         %         46 10 28.0         122 10 30 53.2         2037         Husband OR (UO)           JBO         +         45 27 41.7         119 50 31.3         0.643         Jordan Butte, Oregon           JCW         %         48 11 42.7         121 53 31.1         0.792 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               |        |                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |            |               |        |                           |
| GMW         %         47         25         122         47         10.8         0.506         Gold Mt.           GUL         %         45         55         27.0         121         35         44.0         1.189         Guler Mt.           HAM         %         42         0.83         121         35         16.0         1999         Hamaker Mt. Oregon           HBO         %         43         50         35         121         19         19         1.61         Huckberry Mt. Oregon           HBO         %         47         35         46         123         03         15.2         1.006         Hoodsport           HBO         %         47         35         46         123         03         15.2         1.006         Hamaker Mt Oregon           HBO         %         46         10         22.0         53.5         2.037         Hayback Lookat         1.001           JBO         +         45         27         113         05         12.0         14.0         Jim Creek         1.002         Jim Creek         1.001         1.003         1.014         1.001         1.001         1.001         1.001         1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |            |               |        |                           |
| GSM         %         47         12         147         40.2         1.305         Grass Mt.           GUL         %         45         55         7.0         12         35         44.0         1.189         Guler Mt.           HAM         %         42         40         30         12         55         44.0         1999         Hamaker Mt. Oregon           HDW         %         47         85         46         12         03         15.2         1.006         Hoodsport         Moregon           HDW         %         47         18         54.0         1.200         Hamask Mountain. Oregon           HSR         %         44         12.2         12         04.0         1.200         Harness Mountain. Oregon           HSR         %         44         14.2         12         16         0.5         0.833         Haystack Lookout           HW         %         47         84         14.2         12         04.0         June Lake         KE           HW         %         46         18         1.2         12         22         0.975         King Mt., Oregon           JUN         %         46         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |            |               |        |                           |
| CUL         %         45 55 27.0         121 35 44.0         1.189         Guler Mt.           HZO         H         46 23 45.0         119 25 22.0         -         Water PNNL Station           HAM         %         42 04 08.3         121 58 16.0         1.999         Hamaker Mt. Oregon           HBO         %         43 50 39.5         122 19 11.9         1.615         Huckleberry Mt., Oregon           HDW         %         43 13 35.0         123 05 24.0         1.020         Hamaker Mt., Oregon           HSR         %         46 10 28.0         122 10 46.0         1.720         South Ridge, Mt. St. Helens           HW         %         44 71.7         119 50 13.3         0.645         Jordan Butte, Oregon           JBO         +         45 27 46.7         129 05 3.5         2.037         Husband OR (UO)           JBN         %         46 08 5.0         122 09 04.4         1.049         June Lake           KEB         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KMO         %         45 30 1.2         123 37 2.1         1.774         Litte Aspen Butte, Oregon           KXN         N         41 49 31.2         123 20 3 48.7         1.774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |    |            |               |        |                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |            |               |        |                           |
| HAM         %         42 04 08.3         121 58 16.0         1.999         Hamaker ML, Oregon           HBO         %         43 50 395         122 19 11.9         1.615         Huckleberry ML, Oregon           HOG         %         42 14 32.7         121 42 20.5         1.887         Hogback Mm., Oregon           HSO         %         44 10 28.0         122 10 46.0         1.720         South Ridge, ML, St. Helens           HW         %         44 17 12.2         121 60 55.5         2.037         Husband OR (UO)           JBO         +         45 27 41.7         119 50 13.3         0.645         Jordan Butte, Oregon           JCW         %         44 61 14.2         121 46 03.5         0.848         CAL-NET           KBD         + 45 27 41.7         119 50 13.3         0.645         Jordan Butte, Oregon           JCW         %         44 11 42.7         122 15 31.1         0.792         Jim Creek           KBD         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KKM         % 45 38 07.8         122 23 33.0         -         CAL-NET           LAB         %         42 16 03.5         122 37 32.1         1.774         Linte Aspen Bute, Oregon      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |            |               |        |                           |
| TBD         %         43 50 39.5         122 19 11.9         1.615         Huckberry Mt. Öregon           HDW         %         47 38 84.6         123 03 15.2         1.006         Hoodsport         Hoodsport           HSO         %         43 31 33.0         123 05 24.0         1.020         Harness Mountain. Oregon           HSR         %         46 10 28.0         122 10 46.0         1.720         South Ridge, Mt. St. Helens           HTW         %         47 48 14.2         121 55 33.1         0.645         Jordan Bute, Oregon           JBO         +         45 27 41.7         119 50 13.3         0.645         Jordan Bute, Oregon           JUN         %         46 08 50.0         122 09 04.4         1.049         June Lake           KEB         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KMO         %         45 38 07.8         123 29 22.2         0.975         Kings Mt. Oregon           KXS         N         41 49 51.0         123 52 33.0         -         CAL-NET           KMD         %         45 30 3.12.2         13 732.1         1.769         CAL-NET           LAB         % 42 16 03.3         122 02 34 8.7         1.774         Littl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               | 1 999  |                           |
| HDW         %         47 38 54.6         123 03 15.2         1.006         Hoogback Mm., Oregon           HOG         %         42 14 32.7         121 42 20.5         1.887         Hogback Mm., Oregon           HSR         %         46 10 28.0         122 10 46.0         1.720         South Ridge, Mt. St. Helens           HUW         %         44 07 10.9         121 150 33.5         2.037         Husback Lookout           HUO         %         44 07 10.9         121 55 31.1         0.792         Jim Creek           JUN         %         46 08 500         122 09 04.4         1.049         June Lake           KEB         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KMO         %         45 38 07.8         123 29 22.2         0.975         Kings Mt., Oregon           KSX         N         41 49 51.0         123 52 33.0         -         CAL-NET           LAB         %         42 16 03.3         122 37 32.1         1.774         Little Aspen Buite, Oregon           LCM         M         44 39 51.0         123 17 32.8         1.95         Ladd Mt.           LAB         %         42 16 03.3         122 07 38.8         1.069         Lewas Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    |            |               |        |                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |            |               |        |                           |
| ISO       %       43 31 33.0       123 05 24.0       1.020       Harress Mountain, Oregon         HSR       %       46 10 28.0       122 10 46.0       1.720       South Ridge, Mt. St. Helens         HTW       %       44 07 10.9       121 50 53.5       2.037       Husband OR (UO)         JBO       +       45 27 41.7       119 50 13.3       0.645       Jordan Bute, Oregon         JCW       %       48 11 42.7       121 55 31.1       0.792       Jim Creek         KEB       N       42 52 20.0       124 20 03.0       0.818       CAL-NET         KKMO       %       46 87 06.7       122 11 41.3       0.610       Kormos         KSX       N       41 49 51.0       123 52 33.0       -       CAL-NET         LAB       %       42 16 03.3       122 03 48.7       1.774       Little Aspen Butte, Oregon         LAM       N       41 36 52.2       122 37 32.1       1.769       CAL-NET         LCCM       M       45 50 16.8       111 52 40.8       1.669       Lewis and Clark Caverns, MT         LCCM       %       46 40 04.8       122 17 78.8       1.195       Ladd Mt.         LNW       %       46 40 0.0       121 83 56.0       0.533<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    |            |               |        |                           |
| HSR         %         46 10 28.0         122 10 46.0         1.720         South Ridge, Mt. St. Helens           HTW         %         47 48 14.2         121 46 03.5         0.833         Haystack Lookout           HUO         %         44 07 10.9         121 50 53.5         2.037         Husband OR (UO)           JBO         +         45 27 41.7         119 50 13.3         0.645         Jordan Butte, Oregon           JUN         %         46 08 50.0         122 09 04.4         1.049         June Lake           KEB         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KMO         %         45 38 07.8         123 29 22.2         0.975         Kings Mt., Oregon           KSX         N         41 49 51.0         123 52 33.0         -         CAL-NET           KTR         N         41 36 35.2         122 37 32.1         1.769         CAL-NET           LAM         N         41 36 35.2         122 37 32.1         1.769         CAL-NET           LCW         %         46 40 14.4         122 42 02.8         0.396         Lucas Creek           LMW         %         46 30 12.2         119 25 15.0         0.211 48 36.0         0.853         Longmi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |            |               |        |                           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |            |               |        |                           |
| HUO         %         44 07 10.9         121 50 53.5         2.037         Husband OR (UO)           JBO         +         45 27 41.7         119 50 13.3         0.645         Jordan Bute, Oregon           JCW         %         46 08 50.0         122 09 04.4         1.049         June Lake           KEB         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KMO         %         45 38 07.8         123 29 22.2         0.975         Kings Mt., Oregon           KSX         N         41 49 51.0         123 52 33.0         -         CAL-NET           KTR         N         41 54 31.2         123 22 348.7         1.774         Little Aspen Butte, Oregon           LAM         N         41 36 35.2         122 37 32.1         1.769         CAL-NET           LCCW         %         46 40 14.4         122 40 28.         0.396         Lucas Creek           LMW         %         46 40 12.11 52 40.8         1.669         Lewis and Clark Caverns, MT           LCCW         %         46 40 12.11 22 40.2.8         0.396         Lucas Creek           LMW         %         64 00.0         12 14 83 6.0         0.671         Lincton Mt., Oregon           LO2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        |                           |
| JBO         +         45 27 41.7         119 50 13.3         0.645         Jordan Butte, Oregon           JCW         %         48 11 42.7         121 55 31.1         0.792         Jim Creek           JUN         %         46 08 50.0         122 09 04.4         1.049         June Lake           KEB         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KMO         %         45 38 07.8         123 29 22.2         0.975         Kings Mt., Oregon           KOS         %         46 27 46.7         122 11 41.3         0.610         Kosmos           KTR         N         41 54 31.2         123 22 35.4         1.378         CAL-NET           LAB         %         42 16 03.3         122 03 48.7         1.774         Litte Aspen Butte, Oregon           LAM         N         41 35 50 16.8         111 52 40.8         1.669         Lewis and Clark Caverns, MT           LCCM         M         45 50 16.8         111 52 40.8         1.059         Ladd Mt.           LNW         %         46 40 04.8         122 17 28.8         1.050         Ladd Mt.           LOC         +         46 43 01.2         119 25 51.0         0.210         Locke Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |            |               |        |                           |
| JCW         %         48 11 42.7         121 55 31.1         0.792         Jim Creek           JUN         %         46 08 50.0         122 09 04.4         1.049         June Lake           KEB         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KMO         %         45 38 07.8         123 29 22.2         0.975         Kings Mt., Oregon           KOS         %         46 27 46.7         123 12 11 41.3         0.610         Kosmos           KXR         N         41 94 51.0         123 52 33.0         -         CAL-NET           LAB         %         42 16 03.3         122 03 48.7         1.774         Little Aspen Butte, Oregon           LAM         N         41 36 55.2         122 37 32.1         1.769         CAL-NET           LCW         %         46 40 14.4         122 42 02.8         0.396         Lucas Creek           LMW         %         46 40 04.8         122 17 7 8.8         1.195         Ladd Mt.           LOC         +         46 43 01.2         119 25 51.0         0.210         Locke Island           LVP         %         46 03 59.4         122 24 10.2         1.134         Lakeview Peak           MBW <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |            |               |        |                           |
| JUN         %         46 08 50.0         122 09 04.4         1.049         June Lake           KEB         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KMO         %         45 38 07.8         123 29 22.2         0.975         Kings Mt., Oregon           KOS         %         46 27 46.7         122 11 41.3         0.610         Kosmos           KSX         N         41 95 1.0         123 52 33.0         -         CAL-NET           LAB         %         42 16 03.3         122 03 48.7         1.774         Little Aspen Butte, Oregon           LAM         N         41 36 35.2         122 37 32.1         1.769         CAL-NET           LCCM         M         45 50 16.8         111 52 40.8         1.669         Lewis and Clark Cavems, MT           LCW         %         46 40 04.4         122 24 7 28.8         1.95         Ladd Mt.           LNO         +         45 52 18.6         118 17 06.6         0.771         Lincton Mt., Oregon           LO2         %         46 43 01.2         119 25 51.0         0.210         Locke Island           LVP         %         46 03 59.4         122 24 1.02         1.134         Lakeview Peak <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               |        |                           |
| KEB         N         42 52 20.0         124 20 03.0         0.818         CAL-NET           KMO         %         45 38 07.8         123 29 22.2         0.975         Kings Mt., Oregon           KOS         %         46 27 46.7         122 11 41.3         0.610         Kosmos           KSX         N         41 49 51.0         123 52 33.0         -         CAL-NET           LAB         %         42 16 03.3         122 03 48.7         1.774         Little Aspen Butte, Oregon           LAM         N         41 36 35.2         122 37 32.1         1.769         CAL-NET           LCW         %         46 40 14.4         122 42 02.8         0.396         Lucas Creek           LMW         %         46 40 04.8         122 17 28.8         1.195         Ladd Mt.           LOO         +         45 52 18.6         118 17 06.6         0.711         Lincton Mt., Oregon           LOC         +         46 43 01.2         119 25 15.0         0.210         Locke Island           LVP         %         46 03 02.4         121 53 58.8         1.676         Mt. Baker           MCMT         M         44 9 39.6         112 50 55.8         2.323         McKenzie Canyon, MT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               |        |                           |
| KMO         %         45 38 07.8         123 29 22.2         0.975         Kings Mt., Oregon           KOS         %         46 27 46.7         122 11 41.3         0.610         Kosmos           KSX         N         41 49 51.0         123 52 33.0         -         CAL-NET           LAB         %         42 16 03.3         122 03 48.7         1.774         Little Aspen Butte, Oregon           LAM         N         41 36 35.2         122 37 32.1         1.769         CAL-NET           LCCM         M         45 50 16.8         111 52 40.8         1.669         Lewis and Clark Caverns, MT           LCW         %         46 40 04.8         122 17 28.8         1.195         Ladd Mt.           LNO         +         45 52 18.6         118 17 06.6         0.771         Lincton Mt., Oregon           LO2         %         46 64 00.9         12 24 10.2         1.134         Lakeview Peak           MCMT         # 46 43 01.2         119 25 51.0         0.210         Locke Island           LVP         %         46 36 47.4         119 45 39.6         0.330         Micway           MEW         %         47 12 07.0         122 38 45.0         0.093         Mt. Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |            |               |        |                           |
| KOS         %         46 27 46.7         122 11 41.3         0.610         Kosmos           KSX         N         41 49 51.0         123 52 33.0         -         CAL-NET           KTR         N         41 54 31.2         123 22 35.4         1.378         CAL-NET           LAB         %         42 16 03.3         122 03 48.7         1.779         CAL-NET           LCCM         M         45 50 16.8         111 52 40.8         1.669         Lewis and Clark Caverns, MT           LCW         %         46 40 04.4         122 42 02.8         0.396         Lucas Creek           LMW         %         46 40 04.4         122 47 02.8         0.396         Lucas Creek           LOW         %         46 45 00.0         121 48 36.0         0.853         Longmire           LOC         +         46 43 01.2         119 25 51.0         0.210         Locke Island           LVP         %         46 03 59.4         122 50 55.8         2.323         McKenzie Canyon, MT           MCW         %         48 40 46.8         122 49 56.4         0.693         Mt. Constitution           MDW         +         46 33 27.0         119 21 32.4         0.146         Mary S reak, Oregon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |            |               |        |                           |
| KSX         N         41 49 51.0         123 52 33.0         -         CAL-NET           KTR         N         41 54 31.2         123 22 35.4         1.378         CAL-NET           LAB         %         42 16 03.3         122 03 48.7         1.774         Little Aspen Butte, Oregon           LAM         N         41 36 35.2         122 37 32.1         1.769         CAL-NET           LCCM         M         45 50 16.8         111 52 40.8         1.669         Lewis and Clark Caverns, MT           LCW         %         46 40 04.8         122 17 28.8         1.195         Ladd Mt.           LNO         +         45 52 18.6         118 17 06.6         0.771         Lincton Mt., Oregon           LO2         %         46 45 00.0         121 48 36.0         0.853         Longmire           LO2         +         46 43 01.2         119 25 51.0         0.210         Locke Island           LVP         %         46 03 59.4         122 24 10.2         1.134         Lakeview Peak           MBW         %         48 47 02.4         121 50 55.8         2.323         McKenzie Canyon, MT           MCW         %         48 30.4         120 456.4         0.693         Mt. Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        |                           |
| KTR         N         41 54 31.2         123 22 35.4         1.378         CAL-NET           LAB         %         42 16 03.3         122 03 48.7         1.774         Little Aspen Butte, Oregon           LAM         N         41 36 35.2         122 33 32.1         1.769         CAL-NET           LCCM         M         45 50 16.8         111 52 40.8         1.669         Lewis and Clark Caverns, MT           LCW         %         46 40 04.4         122 42 02.8         0.396         Lucas Creek           LMW         %         46 40 00.0         121 48 36.0         0.853         Longmire           LOC         +         46 45 00.0         121 48 36.0         0.853         Longmire           LOC         +         46 43 01.2         119 25 51.0         0.210         Locke Island           LVP         %         48 07 02.4         121 50 55.8         2.323         McKenzie Canyon, MT           MCW         %         48 40 46.8         122 49 56.4         0.693         Mt. Constitution           MDW         +         46 36 47.4         119 45 39.6         0.330         Midway           MEW         %         47 12 07.0         122 38 45.0         0.097         McNei Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               |        |                           |
| LAB         %         42 16 03.3         122 03 48.7         1.774         Little Aspen Butte, Oregon           LAM         N         41 36 35.2         122 37 32.1         1.769         CAL-NET           LCCM         M         45 50 16.8         111 52 40.8         1.669         Lewis and Clark Caverns, MT           LCW         %         46 40 14.4         122 42 02.8         0.396         Lucas Creek           LMW         %         46 40 04.8         122 17 28.8         1.195         Ladd Mt.           LO2         %         46 45 00.0         121 48 36.0         0.771         Lincton Mt., Oregon           LO2         %         46 45 00.0         121 48 36.0         0.853         Longmire           LO2         %         46 03 59.4         122 24 10.2         1.134         Lakeview Peak           MBW         %         48 47 02.4         121 53 58.8         2.323         McKenzie Canyon, MT           MCMT         M         44 9 39.6         112 50 55.8         2.323         McKenzie Canyon, MT           MDW         +         46 3 327.0         119 21 32.4         0.146         May Junction 2           MOX         +         46 33 27.0         119 21 33.4         0.501         Moxi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               |        |                           |
| LAMN41 36 35.2122 37 32.11.769CAL-NETLCCMM45 50 16.8111 52 40.81.669Lewis and Clark Caverns, MTLCW%46 40 04.4122 42 02.80.396Lucas CreekLMW%46 40 04.8122 17 28.81.195Ladd Mt.LNO+45 52 18.6118 17 06.60.771Lincton Mt., OregonLO2%46 45 00.0121 48 36.00.853LongmireLOC+46 43 01.2119 25 51.00.210Locke IslandLVP%46 03 59 4122 24 10.21.134Lakeview PeakMBW%48 47 02.4121 53 58.81.676Mt. BakerMCMTM44 49 39.6112 50 55.82.323McKenzie Canyon, MTMCW%48 40 46.8122 49 56.40.693Mt. ConstitutionMDW+46 33 27.0119 21 32.40.146May Junction 2MOX+46 33 27.0119 21 32.40.146May Junction 2MOX+46 33 27.0122 33 300.61.249Mary's Peak, OregonMTM%46 01 31.8122 12 42.01.121Mt. MitchellMURR%47 07 12 0122 33 360.60.300MOX+46 43 59.4120 49 25.20.728MCO%43 42 14.4120 84 80.1.908NeceryCateryCateryCateryMURR%47 07 12 0122 33 360NAC+46 43 59.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        |                           |
| $\begin{array}{ccccc} LCCM & M & 45 50 16.8 & 111 52 40.8 & 1.669 & Lewis and Clark Caverns, MT \\ LCW & \% & 46 40 014.4 & 122 42 02.8 & 0.396 & Lucas Creek \\ LMW & \% & 46 40 04.8 & 122 17 28.8 & 1.195 & Ladd Mt. \\ LNO & + & 45 52 18.6 & 118 17 06.6 & 0.771 & Lincton Mt., Oregon \\ LO2 & \% & 46 45 00.0 & 121 48 36.0 & 0.853 & Longmire \\ LOC & + & 46 43 01.2 & 119 25 51.0 & 0.210 & Locke Island \\ LVP & \% & 46 03 59.4 & 122 24 10.2 & 1.134 & Lakeview Peak \\ MBW & \% & 48 47 02.4 & 121 53 58.8 & 1.676 & Mt. Baker \\ MCMT & M & 44 49 39.6 & 112 50 55.8 & 2.323 & McKenzie Canyon, MT \\ MCW & \% & 48 40 46.8 & 122 49 56.4 & 0.693 & Mt. Constitution \\ MDW & + & 46 36 47.4 & 119 45 39.6 & 0.330 & Midway \\ MEW & \% & 47 12 07.0 & 122 38 45.0 & 0.097 & McNeil Island \\ MJ2 & + & 46 33 27.0 & 119 21 32.4 & 0.146 & May Junction 2 \\ MOX & + & 46 34 38.4 & 120 17 53.4 & 0.501 & Moxie City \\ MPO & \% & 44 30 17.4 & 123 33 00.6 & 1.249 & Mary's Peak, Oregon \\ MTM & \% & 46 01 31.8 & 122 12 42.0 & 1.121 & Mt. Mitchell \\ MURR & \% & 47 07 12.0 & 122 33 36.0 & 0.100 & Camp Murry ANSS-SMO \\ NAC & + & 46 43 59.4 & 120 49 25.2 & 0.728 & Naches \\ NCO & \% & 43 42 14.4 & 121 08 18.0 & 1.908 & Newberry Crater, Oregon \\ NAC & + & 46 00 27.1 & 123 27 01.8 & 0.826 & Nicolai Mt., Oregon \\ NAC & + & 46 00 27.1 & 123 27 01.8 & 0.826 & Nicolai Mt., Oregon \\ NAC & + & 46 43 59.4 & 120 49 25.2 & 0.728 & Naches \\ NCO & \% & 43 02 07.1 & 124 37 30.0 & 0.487 & Olympics - Bonidu Creek \\ OBH & \% & 47 19 34.5 & 123 51 57.0 & 0.383 & Olympics - Bonidu Creek \\ OD2 & + & 47 23 15.6 & 118 42 34.8 & 0.553 & Odesa site 2 \\ OD2 & + & 47 23 15.6 & 118 42 34.8 & 0.553 & Odesa site 2 \\ OPR & \% & 48 19 24.0 & 122 31 54.6 & 0.054 & Oak Harbor \\ ON2 & \% & 48 19 24.0 & 122 31 54.6 & 0.054 & Oak Harbor \\ ON2 & \% & 47 44 03.6 & 124 11 10.2 & 0.561 & Octopus West \\ OD3 & \% & 77 44 03.6 & 124 11 10.2 & 0.561 & Octopus West \\ OSD & \% & 77 48 59.2 & 123 42 13.7 & 2.008 & Olympics - Snow Dome \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |            |               |        |                           |
| LCW         %         46 40 14.4         122 42 02.8         0.396         Lucas Creek           LMW         %         46 40 04.8         122 17 28.8         1.195         Ladd Mt.           LNO         +         45 52 18.6         118 17 06.6         0.771         Lincton Mt., Oregon           LO2         %         46 45 00.0         121 48 36.0         0.853         Longmire           LOC         +         46 43 01.2         119 25 51.0         0.210         Locke Island           LVP         %         46 03 59 4         122 24 10.2         1.134         Lakeriew Peak           MBW         %         48 47 02.4         121 53 58.8         1.676         Mt. Baker           MCMT         M         44 49 39.6         112 50 55.8         2.323         McKenzie Canyon, MT           MCW         %         48 40 46.8         122 24 9 56.4         0.693         Mt. Constitution           MDW         +         46 33 27.0         112 23 38 0.0         0.300         Midway           MEW         %         47 12 07.0         122 33 30.6         1.249         Mary's Peak, Oregon           MTM         %         46 01 31.8         122 12 42.0         1.121         Mt. Mtchell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |            |               |        |                           |
| LMW       %       46 40 04.8       122 17 28.8       1.195       Ladd Mt.         LNO       +       45 52 18.6       118 17 06.6       0.771       Lincton Mt., Oregon         LO2       %       46 45 00.0       121 48 36.0       0.853       Longmire         LOC       +       46 43 01.2       119 25 51.0       0.210       Locker Island         LVP       %       46 03 59.4       122 24 10.2       1.134       Lakeview Peak         MBW       %       48 47 02.4       121 53 58.8       1.676       Mt. Baker         MCMT       M       44 49 39.6       112 50 55.8       2.323       McKenzie Canyon, MT         MCW       %       48 40 46.8       122 49 56.4       0.693       Mt. Constitution         MDW       +       46 33 27.0       119 21 32.4       0.146       May Junction 2         MOX       +       46 34 38.4       120 17 53.4       0.501       Moxie City         MPO       %       44 30 17.4       123 33 00.6       1.249       Mary's Peak, Oregon         MTM       %       46 61 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       47 07 12.0       122 33 36.0       0.100       Cam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        |                           |
| LNO       +       45 52 18.6       118 17 06.6       0.771       Lincton Mt., Oregon         LO2       %       46 45 00.0       121 48 36.0       0.853       Longmire         LOC       +       46 03 59 4       122 24 10.2       1.134       Lakeview Peak         MBW       %       48 47 02.4       121 53 58.8       1.676       Mt. Baker         MCMT       M       44 49 39.6       112 50 55.8       2.323       McKenzie Canyon, MT         MCW       %       48 40 46.8       122 49 56.4       0.693       Mt. Constitution         MDW       +       46 36 47.4       119 45 39.6       0.330       Midway         MEW       %       47 12 07.0       122 38 45.0       0.097       McNeil Island         MJ2       +       46 33 38.4       120 17 53.4       0.501       Moxie City         MPO       %       44 01 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       47 07 12.0       122 33 36.0       0.100       Camp Murry ANSS-SMO         NAC       +       48 04 26.6       120 24.2       0.728       Naches         NCO       %       43 214.4       121 08 18.0       1.908       Newberry Crater, O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        |                           |
| LO2       %       46 45 00.0       121 48 36.0       0.853       Longmire         LOC       +       46 43 01.2       119 25 51.0       0.210       Locke Island         LVP       %       46 03 59 4       122 24 10.2       1.134       Lakeview Peak         MBW       %       48 47 02.4       121 53 58.8       1.676       Mt. Baker         MCMT       M       44 49 39.6       112 50 55.8       2.323       McKenzie Canyon, MT         MCW       %       48 40 46.8       122 49 56.4       0.693       Mt. Constitution         MDW       +       46 36 47.4       119 45 39.6       0.300       Midway         MEW       %       47 12 07.0       122 38 45.0       0.097       McNeil Island         MJ2       +       46 33 27.0       119 21 32.4       0.146       May Junction 2         MOX       +       46 34 38.4       120 17 53.4       0.501       Moxie City         MPO       %       44 30 17.4       123 33 00.6       1.249       Mary's Peak, Oregon         MTM       %       46 01 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       47 07 12.0       123 33 00.6       1.249       Mary's Peak,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        |                           |
| LOC       +       46 43 01.2       119 25 51.0       0.210       Locke Island         LVP       %       46 03 59 4       122 24 10.2       1.134       Lakeview Peak         MBW       %       48 47 02.4       121 53 58.8       1.676       Mt. Baker         MCMT       M       44 49 39.6       112 50 55.8       2.323       McKenzie Canyon, MT         MCW       %       48 40 46.8       122 49 56.4       0.693       Mt. Constitution         MDW       +       46 33 27.0       119 21 32.4       0.146       May Junction 2         MOX       +       46 33 27.0       119 21 32.4       0.146       May Junction 2         MOX       +       46 34 38.4       120 17 53.4       0.501       Moxie City         MPO       %       44 01 7.4       123 33 00.6       1.249       Mary's Peak, Oregon         MTM       %       46 01 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       47 07 12.0       123 33 60.0       0.100       Camp Murry ANSS-SMO         NAC       +       46 43 59.4       120 49 25.2       0.728       Naches         NCO       %       43 20 7.1       124 04 39.0       0.938       Ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        |                           |
| LVP       %       46 03 59 4       122 24 10.2       1.134       Lakeview Peak         MBW       %       48 47 02.4       121 53 58.8       1.676       Mt. Baker         MCMT       M       44 49 39.6       112 50 55.8       2.323       McKenzie Canyon, MT         MCW       %       48 40 46.8       122 49 56.4       0.693       Mt. Constitution         MDW       +       46 36 47.4       119 45 39.6       0.330       Midway         MEW       %       47 12 07.0       122 38 45.0       0.097       McNeil Island         MJ2       +       46 33 27.0       119 21 32.4       0.146       May Junction 2         MOX       +       46 34 38.4       120 17 53.4       0.501       Moxie City         MPO       %       44 30 17.4       123 33 00.6       1.249       Mary's Peak, Oregon         MTM       %       46 01 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       47 07 12.0       122 33 36.0       0.100       Camp Murry ANSS-SMO         NAC       +       46 403 59.4       120 49 25.2       0.728       Naches         NCO       %       43 22 14.4       121 08 18.0       1.908       Newber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        |                           |
| MBW       %       48 47 02.4       121 53 58.8       1.676       Mt. Baker         MCMT       M       44 49 39.6       112 50 55.8       2.323       McKenzie Canyon, MT         MCW       %       48 40 46.8       122 49 56.4       0.693       Mt. Constitution         MDW       +       46 36 47.4       119 45 39.6       0.330       Midway         MEW       %       47 12 07.0       122 38 45.0       0.097       McNeil Island         MJ2       +       46 33 27.0       119 21 32.4       0.146       May Junction 2         MOX       +       46 34 38.4       120 17 53.4       0.501       Moxie City         MPO       %       46 01 71.4       123 33 00.6       1.249       Mary's Peak, Oregon         MTM       %       46 01 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       47 07 12.0       122 33 36.0       0.100       Camp Murry ANSS-SMO         NAC       +       46 43 59.4       120 49 25.2       0.728       Naches         NCO       %       43 21 44.4       121 08 18.0       1.908       Newberry Crater, Oregon         NEL       +       48 04 12.6       120 02 24.6       1.500       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |            |               |        |                           |
| MCMTM44 49 39.6112 50 55.82.323McKenzie Canyon, MTMCW%48 40 46.8122 49 56.40.693Mt. ConstitutionMDW+46 36 47.4119 45 39.60.330MidwayMEW%47 12 07.0122 38 45.00.097McNeil IslandMJ2+46 33 27.0119 21 32.40.146May Junction 2MOX+46 34 38.4120 17 53.40.501Moxie CityMPO%44 30 17.4123 33 00.61.249Mary's Peak, OregonMTM%46 01 31.8122 12 42.01.121Mt. MitchellMURR%47 07 12.0122 33 36.00.100Camp Murry ANSS-SMONAC+46 43 59.4120 49 25.20.728NachesNCO%43 21 4.4121 08 18.01.908Newberry Crater, OregonNEL+48 04 12.6120 20 24.61.500Nelson ButteNLO%46 05 21.9123 27 01.80.826Nicolai Mt. OregonOBC%48 02 07.1124 04 39.00.938Olympics - Bonidu CreekOBH%47 19 34.5123 51 57.00.383Olympics - Checka PeakOD2+47 23 15.6118 42 34.80.553Odessa site 2OFR%47 56 00.0124 23 41.00.152Olympics - Forest Resource CenOHW%48 19 24.0122 31 54.60.054Oak HarborON2%46 52 50.8123 46 51.80.257 <td></td> <td>%</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | %  |            |               |        |                           |
| MCW       %       48 40 46.8       122 49 56.4       0.693       Mt. Constitution         MDW       +       46 36 47.4       119 45 39.6       0.330       Midway         MEW       %       47 12 07.0       122 38 45.0       0.097       McNeil Island         MJ2       +       46 33 27.0       119 21 32.4       0.146       May Junction 2         MOX       +       46 34 38.4       120 17 53.4       0.501       Moxie City         MPO       %       44 01 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       46 01 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       46 01 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       46 01 31.8       122 12 42.0       1.21       Mt. Mitchell         MURR       %       47 07 12.0       122 33 36.0       0.100       Camp Murry ANSS-SMO         NAC       +       46 43 59.4       120 49 25.2       0.728       Naches         NCO       %       43 21 14.4       121 08 18.0       1.908       Newberry Crater, Oregon         NEL       +       48 04 12.6       120 20 24.6       1.500       Nelson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               |        |                           |
| MDW+46 36 47.4119 45 39.60.330MidwayMEW%47 12 07.0122 38 45.00.097McNeil IslandMJ2+46 33 27.0119 21 32.40.146May Junction 2MOX+46 34 38.4120 17 53.40.501Moxie CityMPO%44 30 17.4123 33 00.61.249Mary's Peak, OregonMTM%46 01 31.8122 12 42.01.121Mt. MitchellMURR%47 07 12.0122 33 36.00.100Camp Murry ANSS-SMONAC+46 44 359.4120 49 25.20.728NachesNCO%43 42 14.4121 08 18.01.908Newberry Crater, OregonNEL+48 04 12.6120 20 24.61.500Nelson ButteNLO%48 02 07.1124 04 39.00.938Olympics - Bonidu CreekOBH%47 19 34.5123 51 57.00.383Olympics - Cheeka PeakOD2+47 23 15.6118 42 34.80.553Odessa site 2OFR%47 56 00.0124 23 41.00.152Olympics - Forest Resource CenOHW%48 19 24.0122 31 54.60.054Oak HarborON2%46 52 50.8123 46 51.80.257Olympics - North RiverOOW%47 48 59.2123 42 13.72.008Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |            |               |        |                           |
| MEW%47 12 07.0122 38 45.00.097McNeil IslandMJ2+46 33 27.0119 21 32.40.146May Junction 2MOX+46 34 38.4120 17 53.40.501Moxie CityMPO%44 30 17.4123 33 00.61.249Mary's Peak, OregonMTM%46 01 31.8122 12 42.01.121Mt. MitchellMURR%47 07 12.0122 33 36.00.100Camp Murry ANSS-SMONAC+46 43 59.4120 49 25.20.728NachesNCO%43 42 14.4121 08 18.01.908Newberry Crater, OregonNEL+48 04 12.6120 20 24.61.500Nelson ButteNLO%46 05 21.9123 27 01.80.826Nicolai Mt., OregonOBC%48 02 07.1124 04 39.00.938Olympics - Bonidu CreekOBH%47 19 34.5123 51 57.00.383Olympics - Cheeka PeakOD2+47 23 15.6118 42 34.80.553Odessa site 2OFR%48 19 24.0122 31 54.60.054Oak HarborON2%46 52 50.8123 46 51.80.257Olympics - North RiverOOW%47 48 59.2123 42 13.72.008Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |    |            |               |        |                           |
| MJ2       +       46 33 27.0       119 21 32.4       0.146       May Junction 2         MOX       +       46 34 38.4       120 17 53.4       0.501       Moxie City         MPO       %       44 30 17.4       123 33 00.6       1.249       Mary's Peak, Oregon         MTM       %       46 01 31.8       122 12 42.0       1.121       Mt. Mitchell         MURR       %       47 07 12.0       122 33 36.0       0.100       Camp Murry ANSS-SMO         NAC       +       46 43 59.4       120 49 25.2       0.728       Naches         NCO       %       43 42 14.4       121 08 18.0       1.908       Newberry Crater, Oregon         NEL       +       48 04 12.6       120 20 24.6       1.500       Nelson Butte         NLO       %       46 05 21.9       123 27 01.8       0.826       Nicolai Mt., Oregon         OBC       %       48 02 07.1       124 04 39.0       0.938       Olympics - Burnt Hill         OCP       %       48 17 53.5       124 37 30.0       0.487       Olympics - Cheeka Peak         OD2       +       47 56 00.0       124 23 41.0       0.152       Olympics - Forest Resource Cen         OHW       %       48 19 24.0       122 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |            |               |        |                           |
| MOX+46 34 38.4120 17 53.40.501Moxie CityMPO%44 30 17.4123 33 00.61.249Mary's Peak, OregonMTM%46 01 31.8122 12 42.01.121Mt. MitchellMURR%47 07 12.0122 33 36.00.100Camp Murry ANSS-SMONAC+46 43 59.4120 49 25.20.728NachesNCO%43 42 14.4121 08 18.01.908Newberry Crater, OregonNEL+48 04 12.6120 20 24.61.500Nelson ButteNLO%46 05 21.9123 27 01.80.826Nicolai Mt., OregonOBC%48 02 07.1124 04 39.00.938Olympics - Bonidu CreekOBH%47 19 34.5123 51 57.00.383Olympics - Cheeka PeakOD2+47 23 15.6118 42 34.80.553Odessa site 2OFR%48 19 24.0122 31 54.60.054Oak HarborON2%46 52 50.8123 46 51.80.257Olympics - North RiverOOW%47 44 03.6124 11.0.20.561Octopus WestOSD%47 48 59.2123 42 13.72.008Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |            |               |        |                           |
| MPO         %         44 30 17.4         123 33 00.6         1.249         Mary's Peak, Oregon           MTM         %         46 01 31.8         122 12 42.0         1.121         Mt. Mitchell           MURR         %         47 07 12.0         122 33 36.0         0.100         Camp Murry ANSS-SMO           NAC         +         46 43 59.4         120 49 25.2         0.728         Naches           NCO         %         43 42 14.4         121 08 18.0         1.908         Newberry Crater, Oregon           NEL         +         48 04 12.6         120 20 24.6         1.500         Nelson Butte           NLO         %         46 05 21.9         123 27 01.8         0.826         Nicolai Mt., Oregon           OBC         %         48 02 07.1         124 04 39.0         0.938         Olympics - Bonidu Creek           OBH         %         47 19 34.5         123 51 57.0         0.383         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         47 56 00.0         124 23 41.0         0.152         Olympics - Forest Resource Cen           OHW         %         48 19 24.0         122 31 54.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               |        |                           |
| MTM         %         46 01 31.8         122 12 42.0         1.121         Mt. Mitchell           MURR         %         47 07 12.0         122 33 36.0         0.100         Camp Murry ANSS-SMO           NAC         +         46 43 59.4         120 49 25.2         0.728         Naches           NCO         %         43 42 14.4         121 08 18.0         1.908         Newberry Crater, Oregon           NEL         +         48 04 12.6         120 20 24.6         1.500         Nelson Butte           NLO         %         46 05 21.9         123 27 01.8         0.826         Nicolai Mt., Oregon           OBC         %         48 02 07.1         124 04 39.0         0.938         Olympics - Bonidu Creek           OBH         %         47 19 34.5         123 51 57.0         0.383         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         47 56 00.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 11 10.2         0.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |    |            |               |        |                           |
| MURR         %         47 07 12.0         122 33 36.0         0.100         Camp Murry ANSS-SMO           NAC         +         46 43 59.4         120 49 25.2         0.728         Naches           NCO         %         43 42 14.4         121 08 18.0         1.908         Newberry Crater, Oregon           NEL         +         48 04 12.6         120 22 4.6         1.500         Nelson Butte           NLO         %         46 05 21.9         123 27 01.8         0.826         Nicolai Mt., Oregon           OBC         %         48 02 07.1         124 04 39.0         0.938         Olympics - Bonidu Creek           OBH         %         47 19 34.5         123 51 57.0         0.383         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         47 56 00.0         124 23 41.0         0.152         Olympics - Forest Resource Cen           OHW         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 13.7         2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MPO |    |            |               |        |                           |
| MURR         %         47 07 12.0         122 33 36.0         0.100         Camp Murry ANSS-SMO           NAC         +         46 43 59.4         120 49 25.2         0.728         Naches           NCO         %         43 42 14.4         121 08 18.0         1.908         Newberry Crater, Oregon           NEL         +         48 04 12.6         120 20 24.6         1.500         Nelson Butte           NLO         %         46 05 21.9         123 27 01.8         0.826         Nicolai Mt., Oregon           OBC         %         48 02 07.1         124 04 39.0         0.938         Olympics - Bonidu Creek           OBH         %         47 19 34.5         123 51 57.0         0.383         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 48 59.2         123 42 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MTM |    |            |               |        |                           |
| NAC       +       46 43 59.4       120 49 25.2       0.728       Naches         NCO       %       43 42 14.4       121 08 18.0       1.908       Newberry Crater, Oregon         NEL       +       48 04 12.6       120 20 24.6       1.500       Nelson Butte         NLO       %       46 05 21.9       123 27 01.8       0.826       Nicolai Mt., Oregon         OBC       %       48 02 07.1       124 04 39.0       0.938       Olympics - Bonidu Creek         OBH       %       47 19 34.5       123 51 57.0       0.383       Olympics - Burnt Hill         OCP       %       48 17 53.5       124 37 30.0       0.487       Olympics - Cheeka Peak         OD2       +       47 23 15.6       118 42 34.8       0.553       Odessa site 2         OFR       %       47 56 00.0       124 23 41.0       0.152       Olympics - Forest Resource Cen         OHW       %       48 19 24.0       122 31 54.6       0.054       Oak Harbor         ON2       %       46 52 50.8       123 46 51.8       0.257       Olympics - North River         OOW       %       47 44 03.6       124 11 10.2       0.561       Octopus West         OSD       %       47 48 59.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | %  | 47 07 12.0 |               | 0.100  | Camp Murry ANSS-SMO       |
| NCO         %         43 42 14.4         121 08 18.0         1.908         Newberry Crater, Oregon           NEL         +         48 04 12.6         120 20 24.6         1.500         Nelson Butte           NLO         %         46 05 21.9         123 27 01.8         0.826         Nicolai Mt., Oregon           OBC         %         48 02 07.1         124 04 39.0         0.938         Olympics - Bonidu Creek           OBH         %         47 19 34.5         123 51 57.0         0.383         Olympics - Burnt Hill           OCP         %         48 17 53.5         124 37 30.0         0.487         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         47 56 00.0         124 23 41.0         0.152         Olympics - Forest Resource Cen           OHW         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | +  | 46 43 59.4 | 120 49 25.2   | 0.728  |                           |
| NEL         +         48 04 12.6         120 20 24.6         1.500         Nelson Butte           NLO         %         46 05 21.9         123 27 01.8         0.826         Nicolai Mt., Oregon           OBC         %         48 02 07.1         124 04 39.0         0.938         Olympics - Bonidu Creek           OBH         %         47 19 34.5         123 51 57.0         0.383         Olympics - Burnt Hill           OCP         %         48 17 53.5         124 37 30.0         0.487         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         47 56 00.0         124 23 41.0         0.152         Olympics - Forest Resource Cen           OHW         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |            |               |        | Newberry Crater, Oregon   |
| NLO         %         46 05 21.9         123 27 01.8         0.826         Nicolai Mt., Oregon           OBC         %         48 02 07.1         124 04 39.0         0.938         Olympics - Bonidu Creek           OBH         %         47 19 34.5         123 51 57.0         0.383         Olympics - Burnt Hill           OCP         %         48 17 53.5         124 37 30.0         0.487         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         47 56 00.0         122 31 54.6         0.054         Oak Harbor           OHW         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 48 39.2         123 42 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |            |               |        |                           |
| OBC         %         48 02 07.1         124 04 39.0         0.938         Olympics - Bonidu Creek           OBH         %         47 19 34.5         123 51 57.0         0.383         Olympics - Burnt Hill           OCP         %         48 17 53.5         124 37 30.0         0.487         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         47 56 00.0         122 31 54.6         0.054         Oak Harbor           OHW         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 11 10.2         0.561         Octopus West           OSD         %         47 48 59.2         123 42 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |    |            |               |        |                           |
| OBH         %         47 19 34.5         123 51 57.0         0.383         Olympics - Burnt Hill           OCP         %         48 17 53.5         124 37 30.0         0.487         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         47 56 00.0         122 31 54.6         0.054         Olympics - Forest Resource Cen           OHW         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 11 10.2         0.561         Octopus West           OSD         %         47 48 59.2         123 42 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |            |               |        |                           |
| OCP         %         48 17 53.5         124 37 30.0         0.487         Olympics - Cheeka Peak           OD2         +         47 23 15.6         118 42 34.8         0.553         Odessa site 2           OFR         %         47 56 00.0         124 23 41.0         0.152         Olympics - Forest Resource Cen           OHW         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 11 10.2         0.561         Octopus West           OSD         %         47 48 59.2         123 42 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |            |               |        |                           |
| OD2         +         47         23         15.6         118         42         34.8         0.553         Odessa site 2           OFR         %         47         56         00.0         124         23         41.0         0.152         Olympics - Forest Resource Cen           OHW         %         48         19         24.0         122         31         54.6         0.054         Oak         Harbor           ON2         %         46         52         50.8         123         46         51.8         0.257         Olympics - North River           OOW         %         47         44         0.3.6         124         13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |    |            |               |        |                           |
| OFR         %         47 56 00.0         124 23 41.0         0.152         Olympics - Forest Resource Cen           OHW         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |            |               |        |                           |
| OHW         %         48 19 24.0         122 31 54.6         0.054         Oak Harbor           ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 11 10.2         0.561         Octopus West           OSD         %         47 48 59.2         123 42 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               |        |                           |
| ON2         %         46 52 50.8         123 46 51.8         0.257         Olympics - North River           OOW         %         47 44 03.6         124 11 10.2         0.561         Octopus West           OSD         %         47 48 59.2         123 42 13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |            |               |        |                           |
| OOW         %         47         44         03.6         124         11         10.2         0.561         Octopus West           OSD         %         47         48         59.2         123         42         13.7         2.008         Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |            |               |        |                           |
| OSD % 47 48 59.2 123 42 13.7 2.008 Olympics - Snow Dome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    |            |               |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |    |            |               |        |                           |
| 00K 10 41 50 20.5 125 57 42.0 0.015 Orympics Samon Kluge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |    |            |               |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 10 |            |               | 0.015  |                           |

|  | TABLE | 2A | continued |  |
|--|-------|----|-----------|--|
|--|-------|----|-----------|--|

|            |          |                          | TABLE 2A con               | tinued         |                                                      |
|------------|----------|--------------------------|----------------------------|----------------|------------------------------------------------------|
| STA        | F        | LAT                      | LONG                       | EL             | NAME                                                 |
| OT3        | +        | 46 40 08,4               | 119 13 58.8                | 0.322          | New Othello (replaces OT2 8/26                       |
| OTR        | %        | 48 05 00.0               | 124 20 39.0                | 0.712          | Olympics - Tyee Ridge                                |
| PAT        | +        | 45 52 55.2               | 119 45 08.4                | 0.262          | Paterson                                             |
| PCMD       | %        | 46 53 20.9               | 122 18 00.9                | 0.239          | PC Mountain Detachment SMUT-SM                       |
| PGO        | %        | 45 27 42.6               | 122 27 11.5                | 0.253          | Gresham, Oregon                                      |
| PGW        | %        | 47 49 18.8               | 122 35 57.7                | 0.122          | Port Gamble                                          |
| PRO        | +<br>%   | 46 12 45.6<br>46 50 08.9 | 119 41 08.4<br>121 43 54.4 | 0.553<br>3.085 | Prosser<br>Mt. Rainier, Camp Muir                    |
| RCM<br>RCS | -70<br>% | 46 52 15.6               | 121 43 52.0                | 2.877          | Mt. Rainier, Camp Schurman                           |
| RED        | Ĥ        | 46 17 51.0               | 119 26 15.6                | 0.330          | Red Mountain PNNL Station                            |
| RER        | %        | 46 49 09.2               | 121 50 27.3                | 1.756          | Mt. Rainier, Emerald Ridge                           |
| RMW        | %        | 47 27 35.0               | 121 48 19.2                | 1.024          | Rattlesnake Mt. (West)                               |
| RNO        | %        | 43 54 58.9               | 123 43 25.5                | 0.850          | Roman Nose, Oregon                                   |
| RPW        | %        | 48 26 54.0               | 121 30 49.0                | 0.850          | Rockport                                             |
| RRHS       | %        | 46 47 58.6               | 123 02 25.4                | 0.047          | Rochester HS ANSS-SMO                                |
| RSU        | %        | 46 51 12.0               | 121 45 47.0<br>119 35 28.8 | 4.440<br>1.045 | Rainier summit                                       |
| RSW<br>RVC | +<br>%   | 46 23 40.2<br>46 56 34.5 | 121 58 17.3                | 1.045          | Rattlesnake Mt. (East)<br>Mt. Rainier - Voight Creek |
| RVN        | %        | 47 01 38.6               | 121 20 11.9                | 1.885          | Raven Roost (former NEHRP temp                       |
| RVW        | %        | 46 08 53.2               | 122 44 32.1                | 0.460          | Rose Valley                                          |
| SAW        | +        | 47 42 06.0               | 119 24 01.8                | 0.701          | St. Andrews                                          |
| SBES       | %        | 48 46 05.9               | 122 24 54.2                | 0.119          | Silver Beach ES SMO                                  |
| SEA        | %        | 47 39 15.8               | 122 18 29.3                | 0.030          | UW, Seattle (Wood Anderson BB                        |
| SEP        | #        | 46 12 00.7               | 122 11 28.1                | 2.116          | September lobe, Mt. St. Helens                       |
| SFER       | %        | 47 37 10.4               | 117 21 55.7                | 1 405          | Spokane Schools, Ferris High S                       |
| SHW        | %<br>%   | 46 11 37.1               | 122 14 06.5                | 1.425<br>1.750 | Mt. St. Helens                                       |
| SLF<br>SMW | %<br>%   | 47 45 32.0               | 120 31 40.0<br>123 20 35.4 | 0.877          | Sugar Loaf<br>South Mtn.                             |
| SNI        | Ĥ        | 46 27 80.0               | 119 39 50.0                | -              | PNNL station                                         |
| SOS        | %        | 46 14 38.5               | 122 08 12.0                | 1.270          | Source of Smith Creek                                |
| SSO        | %        | 44 51 21.6               | 122 27 37.8                | 1.242          | Sweet Springs, Oregon                                |
| STD        | %        | 46 14 16.0               | 122 13 21.9                | 1.268          | Studebaker Ridge                                     |
| STW        | %        | 48 09 03.1               | 123 40 11.1                | 0.308          | Striped Peak                                         |
| TBM        | +        | 47 10 12.0               | 120 35 52.8                | 1.006          | Table Mt.                                            |
| TCO        | %<br>%   | 44 06 27.6<br>45 17 23.4 | 121 36 02.1<br>121 47 25.2 | 1.975<br>1.541 | Three Creek Meadows, Oregon.                         |
| TDH<br>TDL | -70<br>% | 46 21 03.0               | 122 12 57.0                | 1.400          | Tom,Dick,Harry Mt., Oregon<br>Tradedollar Lake       |
| TRW        | +        | 46 17 32.0               | 120 32 31.0                | 0.723          | Toppenish Ridge                                      |
| TWW        | +        | 47 08 17.4               | 120 52 06.0                | 1.027          | Teanaway                                             |
| UWFH       | %        | 48 32 46.0               | 123 00 43.0                | 0.010          | UW Friday Harbor SMUT-SMO                            |
| VBE        | %        | 45 03 37.2               | 121 35 12.6                | 1.544          | Beaver Butte, Oregon                                 |
| VCR        | %        | 44 58 58.2               | 120 59 17.4                | 1.015          | Criterion Ridge, Oregon                              |
| VDB        | C        | 49 01 34.0               | 122 06 10.1                | 0.404          | Canada<br>Elea Deiet Orener                          |
| VFP<br>VG2 | %<br>%   | 45 19 05.0<br>45 09 20.0 | 121 27 54.3<br>122 16 15.0 | 1.716<br>0.823 | Flag Point, Oregon                                   |
| VGE        | +        | 45 30 56.4               | 120 46 39.0                | 0.729          | Goat Mt., Oregon<br>Gordon Butte, Oregon             |
| VGZ        | ċ        | 48 24 50.0               | 123 19 27.8                | 0.067          | Canada                                               |
| VIP        | %        | 44 30 29.4               | 120 37 07.8                | 1.731          | Ingram Pt., Oregon                                   |
| VLL        | %        | 45 27 48.0               | 121 40 45.0                | 1.195          | Laurance Lk., Oregon                                 |
| VLM        | %        | 45 32 18.6               | 122 02 21.0                | 1.150          | Little Larch, Oregon                                 |
| VSP        | %        | 42 20 30.0               | 121 57 00.0                | 1.539          | Spence Mtn, Oregon                                   |
| VT2        | +        | 46 58 02.4               | 119 59 57.0                | 1.270          | Vantage2                                             |
| VTH        | %        | 45 10 52.2               | 120 33 40.8                | 0.773<br>0.244 | The Trough, Oregon                                   |
| WA2<br>WAT | ++       | 46 45 19.2<br>47 41 55.2 | 119 33 56.4<br>119 57 14.4 | 0.244<br>0.821 | Wahluke Slope<br>Waterville                          |
| WIB        | +<br>%   | 46 20 34.8               | 123 52 30.6                | 0.503          | Willapa Bay                                          |
| WIW        | +        | 46 25 45.6               | 119 17 15.6                | 0.128          | Wooded Island                                        |
| WPO        | %        | 45 34 24.0               | 122 47 22.4                | 0.334          | West Portland, Oregon                                |
| WPW        | %        | 46 41 55.7               | 121 32 10.1                | 1.280          | White Pass                                           |
| WRD        | +        | 46 58 12.0               | 119 08 41.4                | 0.375          | Warden                                               |
| WRW        | %        | 47 51 26.0               | 120 52 52.0                | 1.189          | Wenatchee Ridge                                      |
| YA2        | +        | 46 31 36.0               | 120 31 48.0                | 0.652          | Yakima<br>Yallan Daala Ma St. Ualana                 |
| YEL<br>YPT | #        | 46 12 35.0               | 122 11 16.0                | 1.750          | Yellow Rock, Mt. St. Helens                          |
| <u></u>    | +        | 46 02 55.8               | 118 57 44.0                | 0.325          | Yellepit                                             |

### **OUTREACH ACTIVITIES**

The PNSN Seismology Lab staff provides an educational outreach program to better inform the public, educators, businesses, policy makers, and the emergency management community about seismicity and natural hazards. Our outreach includes lab tours, lectures, classes and workshops, press conferences, TV and radio news programs and talk shows, field trips, and participation in regional earthquake planning efforts. We provide basic information through information sheets, an audio library, and the Internet on the World-Wide-Web (WWW):

http://www.ess.washington.edu/SEIS/PNSN

| TABLE 2B   |             |                    |                     |              |                                                   |  |  |  |  |
|------------|-------------|--------------------|---------------------|--------------|---------------------------------------------------|--|--|--|--|
| Broad-band | three-compo | onent stations ope | rating at the end o | f the second | d quarter 2001. Symbols are as in Table 2A.       |  |  |  |  |
| STA        | F           | LAT                | LONG                | EL           | NAME                                              |  |  |  |  |
| BRKS       |             | 47 45 19.1         | 122 17 17.9         | 0.020        | Brookside Sch. (vertical BB only) ANSS-SMO        |  |  |  |  |
| COR        | U           | 44 35 08.5         | 123 18 11.5         | 0.121        | Corvallis, Oregon (IRIS station, Operated by OSU) |  |  |  |  |
| DBO        | %           | 43 07 09.0         | 123 14 34.0         | 0.984        | Dodson Butte, Oregon (CREST - operated by UO)     |  |  |  |  |
| ELW        | %           | 47 29 38.8         | 121 52 21.6         | 0.267        | Echo Lake, WA (operated by UW)                    |  |  |  |  |
| ERW        | %           | 48 27 14.4         | 122 37 30.2         | 0.389        | Mt. Erie, WA (operated by UW)                     |  |  |  |  |
| EUO        | %           | 44 01 45.7         | 123 04 08.2         | 0.160        | Eugene, OR U0 CREST BB SMO                        |  |  |  |  |
| GNW        | %           | 47 33 51.8         | 122 49 31.0         | 0.165        | Green Mountain, WA (CREST - operated by UW)       |  |  |  |  |
| HAWA       | U           | 46 23 32.3         | 119 31 57.2         | 0.367        | Hanford Nike (USGS-USNSN)                         |  |  |  |  |
| HLID       | U           | 43 33 45.0         | 114 24 49.3         | 1.772        | Hailey, ID (USGS-USNSN)                           |  |  |  |  |
| LON        | %           | 46 45 00.0         | 121 48 36.0         | 0.853        | Longmire (CREST - operated by UW)                 |  |  |  |  |
| LTY        | %           | 47 15 21.2         | 120 39 53.3         | 0.970        | Liberty, WA (operated by UW)                      |  |  |  |  |
| NEW        | U           | 48 15 50.0         | 117 07 13.0         | 0.760        | Newport Observatory (USGS-USNSN)                  |  |  |  |  |
| OCWA       | U           | 47 44 56.0         | 124 10 41.2         | 0.671        | Octopus Mtn. (USGS-USNSN)                         |  |  |  |  |
| OPC        | %           | 48 06 01.0         | 123 24 41.8         | 0.090        | Olympic Penn College CREST BB                     |  |  |  |  |
| PIN        | %           | 43 48 40.0         | 120 52 19.0         | 1.865        | Pine Mt. Oregon (CREST - operated by UO)          |  |  |  |  |
| PNT        | С           | 49 18 57.6         | 119 36 57.6         | 0.550        | Canada, BB                                        |  |  |  |  |
| RAI        |             | 46 02 25.1         | 122 53 06.4         | 1.520        | Trojan Plant, Oregon (OSU)                        |  |  |  |  |
| RWW        | %           | 46 57 50.1         | 123 32 35.9         | 0.015        | Ranney Well (CREST - operated by UW)              |  |  |  |  |
| SEA        | %           | 47 39 15.8         | 122 18 29.3         | 0.030        | UW, Seattle (Wood Anderson BB)                    |  |  |  |  |
| SNB        | С           | 48 46 33.6         | 123 10 16.3         | 0.408        | Canada                                            |  |  |  |  |
| SP2        | %           | 47 33 23.3         | 122 14 52.8         | 0.030        | Seward Park, Seattle (operated by UW)             |  |  |  |  |
| SPUD       | %           | 47 39 54.3         | 117 25 35.2         | -            | Spokane County Pub Works, temporary               |  |  |  |  |
| SQM        | %           | 48 04 39.0         | 123 02 44.0         | 0.030        | Sequim (operated by UW, telemetered by Battelle)  |  |  |  |  |
| TŤW        | %           | 47 41 40.7         | 121 41 20.0         | 0.542        | Tolt Reservoir, WA (CREST - operated by UW)       |  |  |  |  |
| WVOR       | <u>U</u>    | 42 26 02.0         | 118 38 13.0         | 1.344        | Wildhorse Valley, Oregon (USGS-USNSN)             |  |  |  |  |

### **Special Outreach Events**

- The Nisqually Earthquake Clearinghouse continued to collect and organize data under the direction of Bill Steele and Tony Qamar. Data sets will be accessible soon through the University of Washington Spatial Data Archive at: http://maximus.ce.washington.edu/~nisqually/index.html.
- The PNSN hosted a meeting this quarter of the Contingency planners and Recovery Managers (CPARM) at the Burke Museum featuring presentations researchers participating in The Nisqually Earthquake Clearinghouse.
- The PNSN continued its long association with CREW participating in the quarterly membership meeting and workshop. Bill Steele also participates in Executive Board Meetings as Secretary of the organization.
- The PNSN hosted meetings of the ANSS Technical Integration Committee (see report at http://www.anss.org/ticplan/) and the ANNS Pacific Northwest Region Siting Advisory Committee Meeting (see http://spike.geophys.washington.edu/SEIS/ANSS/minutes april01.html)
- The PNSN was well represented at the April meeting of the Seismological Society of America, with individual or shared authorship of numerous posters and presentations.
- Steve Malone presented seminar series on the Nisqually Earthquake in Catania (3 seminars) and Rome (2 seminars), Italy.
- Steve Malone and Bill Steele participated in the Incorporated Research Institutes for Seismology (IRIS) Annual Meeting in Jackson Hole Wyoming.
- Steve Malone and Bill Steele visited Washington D.C. to brief the Washington State Congressional Delegation on effects of the Nisqually Earthquake.
- Bill Steele attended the annual Western Washington Emergency Network conference held in conjunction with Washington Emergency Management in Bellevue, Washington, and spoke on the development of the Nisqually Earthquake Clearinghouse.
- Bill Steele made a presentation about the impacts of the Nisqually Earthquake to the Association of Geoscience Educators Conference at Bellevue Community College and made the keynote speech at the Seattle Middle Schools Science Fair at the Museum of Flight.
- Ruth Ludwin presented information on Native American stories related to Cascadia Subduction Zone earthquakes at a brown-bag seminar at the UW, to Nisqually Tribal Resource Managers and at the Juan de Fuca Festival in Port Angeles.
- Ruth Ludwin also gave a general talk on Pacific Northwest Earthquake hazards at the Juan de Fuca Festival in Port Angeles over Memorial Day weekend.

Table 2C lists strong-motion, three-component stations operating in Washington and Oregon that provide data in real or near-real time to the PNSN. Several of these stations also have broad-band instruments, as noted. The "SENSOR" field designates what type of seismic sensor is used;
A = Terra-Tech SSA-320 SLN triaxial accelerometer/Terra-Tech IDS24
A20 = Terra-Tech SSA-320 triaxial accelerometer/Terra-Tech IDS20 recording system,
FBA23 = Kinemetrics FBA23 accelerometers and Reftek recording system,

FBA23 = Kinemetrics FBA25 accelerometers and Reftek recording system,
EPI = Kinemetrics Episensor accelerometers and Reftek recording system.
BB = Guralp CMG-40T 3-D broadband velocity sensor.
BB3 = Guralp CMG3T 3-D broadband velocity sensor.
BBZ = Broad Band sensor, PMD 2024, vertical component only.
K2 = Kinemetrics Episensor accelerometers and K2 Recording System

The "TELEMETRY" field indicates the type of telemetry used to recover the data.

- D = dial-up,
- L = continuously telemetered via dedicated lease-line telephone lines,
- L-PPP = continuously telemetered via dedicated lease-line telephone lines using PPP protocol

I = continuously telemetered via Internet,
E = continuously telemetered via Internet from a remote EARTHWORM system

TABLE 2C

Strong-motion three-component stations operating at the end of the second quarter 2001. Symbols are as in Table 2A.

| STA  | F  | LAT        | LONG        | EL    | NAME                                              | SENSORS       | TELEMETRY |
|------|----|------------|-------------|-------|---------------------------------------------------|---------------|-----------|
|      |    |            |             |       |                                                   |               |           |
| ALCT | %  | 47 38 51.0 | 122 02 13.2 | 0.055 | Alcott Elementary, Redmond                        | K2            | 1         |
| ALST | %  | 46 6 31.2  | 123 01 47.4 | 0.000 | Alston, Oregon BPA                                | A20           | L,E,D     |
| ALVY | %  | 43 59 53.2 | 123 00 57.0 | 0.155 | Alvey Substation, Eugene, Oregon BPA              | K2            | L,E       |
| BEVT | %  | 47 55 11.9 | 122 16 11.9 |       | Boeing Everett Plant                              | K2            | I         |
| BRKS | %  | 47 45 19.7 | 122 17 18.4 | 0.100 | Brookside Elementary, Lake Forest Park            | K2,BBZ        | I         |
| CSEN | %  | 47 48 04.5 | 122 13 06.5 | 0.055 | Crystal Springs Elementary, Bothell               | K2            | I         |
| CSO  | #  | 45 31 01.0 | 122 41 22.5 | 0.036 | Canyon Substation, Oregon                         | FBA23         | D         |
| DBO  | %  | 43 07 09.0 | 123 14 34.0 | 0.984 | Dodson Butte, OR (UO CREST)                       | EPI,BB3       | E.L-PPP   |
| EARN | %  | 47 44 24.0 | 122 02 24.0 | 0.010 | East Ridge Elementary, Woodinville                | K2            | I         |
| ELW  | %  | 47 29 38.8 | 121 52 21.6 | 0.267 | Echo Lake, WA                                     | A,BB          | L,D       |
| EUO  | %  | 44 01 45.7 | 123 04 08.2 | 0.160 | Eugene, OR (U0 CREST)                             | EPI,BB3       | E         |
| ĒRW  | %  | 48 27 14.4 | 122 37 30.2 | 0.389 | Mt. Erie, WA                                      | A,BB          | Ĩ,D       |
| FINN | %  | 47 43 08.9 | 122 13 55.0 | 0.010 | Finn Hill Jr High, Juanita                        | K2            | I         |
| GNW  | %  | 47 33 51.8 | 122 49 31.0 | 0.165 | Green Mountain, WA (CREST)                        | EPI,BB3       | L-PPP     |
| HAO  | #  | 45 30 33.1 | 122 39 24.0 | 0.018 | Harrison Substation, Oregon                       | FBA23         | D         |
| HICC | ~  | 47 23 24.4 | 122 17 52.4 | 0.115 | Highline CC, Des Moines                           | K2            | I         |
| HOLY | %  | 47 23 24.4 | 122 23 02.1 | 0.115 | Holy Rosary                                       | K2<br>K2      | Ĭ         |
|      |    |            | 122 53 44.4 | 0.000 |                                                   | A20           | •         |
| KEEL | %  | 45 33 0.0  |             |       | Keeler, Oregon BPA                                |               | L,E,D     |
| KIMB | %  | 47 34 30.9 | 122 18 05.9 | 0.100 | Kimball Elementary, Seattle                       | K2            | l         |
| KIMR | %  | 47 30 11.7 | 122 46 01.9 | 0.123 | Kitsap Moderate Risk Waste                        | K2            | I         |
| KINR | %  | 47 45 06.0 | 122 38 35.0 | 0.010 | Kitsap North Road Shed                            | K2            | I         |
| KITP | %  | 47 40 30.0 | 122 37 47.0 | 0.100 | Kitsap Treatment Plant                            | K2            | 1         |
| LANE | %  | 44 03 06.5 | 123 13 54.8 | 0.120 | Lane Substation, Eugene, Oregon                   | К2            | L,E       |
| LAWT | %  | 47 39 23.4 | 122 23 21.9 | 0.111 | Lawton Elementary, Seattle                        | A20           | I         |
| LEOT | %  | 47 46 04.4 | 122 06 54.3 | 0.155 | Leota Jr High, Woodinville                        | А             | Ι         |
| LON  | %  | 46 45 00.0 | 121 48 36.0 | 0.853 | Longmire (CREST)                                  | EPI,BB3       | L-PPP,D   |
| MARY | %  | 47 39 45.7 | 122 07 11.6 | 0.011 | Marymoor Park, Redmond                            | K2            | I         |
| MBPA | %  | 47 53 56.6 | 121 53 20.2 | 0.186 | Monroe BPA                                        | A20           | L,D       |
| MPL  | %  | 47 28 08.2 | 122 11 06.2 | 0.122 | Maple Valley                                      | А             | L,D       |
| MURR | %  | 47 07 12.0 | 122 33 36.0 | 0.100 | Camp Murry                                        | K2            | none      |
| NOWS | %  | 47 41 12.0 | 122 15 21.2 | 0.000 | NOAA, Bldg 3                                      | A20           | I         |
| OPC  | %  | 48 06 01.0 | 123 24 41.8 | 0.090 | Penninsula College (CREST)                        | EPI,BB3       | Î         |
| PAYL | %  | 47 11 34.0 | 122 18 46.0 | 0.010 | Aylen HS, Puyallup                                | K2            | Î         |
| PCEP | %  | 47 06 43.0 | 122 17 24.2 | 0.160 | PC East Precinct                                  | K2            | 1         |
| PCFR | %  | 46 59 23.3 | 122 26 27.4 | 0.137 | PC Training Center                                | K2            | 1         |
| PCMD | %  | 46 53 20.9 | 122 18 00.9 | 0.239 | PC Mountain Detachment                            | K2<br>K2      | I I       |
| PIN  | %  | 43 48 40.0 | 120 52 19.0 | 1.865 | Pine Mt., OR (U0 CREST)                           | EPI,BB3       | E,L-PPP   |
| PNLK | %  | 47 34 50.0 | 122 01 42.4 | 0.128 | Pine Lake Middle School, Issaguah                 | K2            |           |
|      |    |            |             |       |                                                   |               | I         |
| QAW  | %  | 47 37 53.2 | 122 21 15.0 | 0.140 | Queen Anne                                        | A             | L         |
| RAW  | %  | 47 20 14.0 | 121 55 57.6 | 0.208 | Raver BPA                                         | A             | L,D       |
| RBEN | %  | 47 26 05.4 | 122 11 10.2 | 0.000 | Benson Elementary, Renton                         | K2            | I         |
| RBO  | #  | 45 32 27.0 | 122 33 51.5 | 0.158 | Rocky Butte, Oregon                               | FBA23         | D         |
| RHAZ | %  | 47 32 25.8 | 122 11 08.4 | 0.108 | Hazelwood Elementary, Newcastle                   | A             | I         |
| ROSS | %  | 45 39 46.2 | 122 39 37.0 | 0.100 | Ross BPA                                          | A20           | L,E,D     |
| RRHS | %  | 46 47 58.6 | 123 02 25.4 | 0.047 | Rochester HS, Rochester                           | K2            | none      |
| RWW  | %  | 46 57 50.1 | 123 32 35.9 | 0.015 | Ranney Well (CREST)                               | EPI,BB3       | L-PPP     |
| SBES | %  | 48 46 05.9 | 122 24 54.2 | 0.000 | Silver Beach Elementary, Bellingham               | K2            | I         |
| SEA  | %  | 47 39 18.0 | 122 18 30.0 | 0.030 | Seattle                                           | A,BB          | L,D       |
| SP2  | %  | 47 33 23.3 | 122 14 52.8 | 0.030 | Seward Park, Seattle                              | A,BB          | L,2       |
| SPUD | %  | 47 39 54.3 | 117 25 35.2 | -     | Spokane County Pub Works, tmp                     | EPI,BB or BB3 | ī         |
| SQM  | %  | 48 04 39.0 | 123 02 44.0 | 0.030 | Sequim, WA (CREST)                                | EPI,BB        | L-PPP     |
| TBPA | %  | 47 15 28.1 | 122 22 05.9 | 0.002 | Tacoma WA BPA                                     | A             | L.D       |
| тксо | %  | 47 32 12.7 | 122 18 01.5 | 0.005 | King Co EOC                                       | A20           | L,D<br>I  |
| TTW  | %  | 47 41 40.7 | 121 41 20.0 | 0.542 | Tolt Res, WA (CREST)                              | EPI,BB3       | I         |
| UPS  | %  | 47 15 51.4 | 122 28 56.3 | 0.113 | University of Puget Sound                         | K2            | I         |
| WISC | %  | 47 36 32.0 | 122 10 27.8 | 0.056 | Wilburton Instructional Services Center, Bellevue | K2<br>K2      | -         |
|      | 10 |            | 122 10 21.0 | 0.000 |                                                   | 112           | <u>I</u>  |

#### Press Interviews, Lab Tours, and Workshops

This quarter, the PNSN staff provided 11 K-12 lab tours serving, and 3 college classes serving over 265 students and their escorts.

### Telephone, Mail, and On-line outreach

The PNSN audio library system received about 900 calls this quarter. Calls increased by a factor of 3 in June, when a magnitude 5.0 Benioff zone earthquake occurred near Satsop and an unusual sequence of shallow earthquakes began near Spokane. Our audio library provides several recordings. The most popular is a frequently updated message on current seismic activity. In addition we have a tape describing the seismic hazards in Washington and Oregon, and another on earthquake prediction. Callers often request our one-page information and resource sheet on seismic hazards in Washington and Oregon. Thousands of these have been mailed out or distributed, and we encourage others to reproduce and further distribute this sheet. Our information sheet discussing earthquake prediction is also frequently requested. Callers to the audio library can also choose to be transferred to the Seismology Lab, where additional information is available. This quarter we responded in person to: ~30 calls from management and government, ~40 calls from the media, ~25 calls from educators ~25 calls from the business community, and about 120 calls from the general public.

#### Internet outreach

The PNSN web-site offers many web pages, including maps and lists of the most recent PNW earthquakes, general information on earthquakes and PNW earthquake hazards, information on past damaging PNW earthquakes, and catalogs of earthquake summary cards. Web-pages on seismicity of Cascade Volcanos, and Quarterly summaries of seismicity are also included. The PNSN recent earthquake list is available through the World-Wide-Web (WWW) at:

#### http://www.ess.washington.edu/SEIS/PNSN

"Webicorder" pages allow Web visitors (and us) to view continuous data from PNSN seismographic stations at:

#### http://www.ess.washington.edu/SEIS/PNSN/WEBICORDER/

ShakeMap generates maps showing instrumentally measured shaking effects. Table 3A indicates which events this quarter generated ShakeMaps.

#### Shake Maps: http://spike.ess.washington.edu/shake/index.html

Table 3A also indicates the felt events this quarter that generated Community Internet Intensity Maps (CIIM). CIIM maps are made using Internet reports. For a well-felt event hundreds (or thousands) of people fill out an on-line form describing their experiences during the earthquake. These "felt" reports are converted into numeric intensity values, and the CIIM map shows the average intensity by zip code.

### CIIM Maps: http://pasadena.wr.usgs.gov/shake/pnw/

In addition to the PNSN web site, the UW Dept. of Earth and Space Sciences and the PNSN host several other earthquake-related web sites:

- Volcano Systems Center: http://www.vsc.washington.edu is a cooperative effort of the UW and the USGS that links volcano-related activities of the UW Dept. of Earth and Space Sciences and Oceanography departments with related USGS activities.
- Seismosurfing: http://www.ess.washington.edu/seismosurfing.html is a comprehensive listing of sites worldwide that offer substantive seismology data and information. This page is mirrored at two sites in Europe.
- The Council of the National Seismic Systems (CNSS): http://www.cnss.org features composite listings and maps of recent U.S. earthquakes, and documentation of the EARTHWORM system.
- "Tsunami!" : http://www.ess.washington.edu/tsunami offers many pages, including an excellent discussion on the physics of tsunamis, and short movie clips. It was developed by Benjamin Cook under the direction of Dr. Catherine Petroff (UW Civil Engineering).

• The UW Dept. of Earth and Space Sciences Global Positioning System (GPS):

http://www.ess.washington.edu/GPS/gps.html

site provides information on geodetic studies of crustal deformation in Washington and Oregon.

### EARTHQUAKE DATA - 2001-A

There were 1,604 events digitally recorded and processed at the University of Washington between April 1 and June 30, 2001. Locations in Washington, Oregon, or southernmost British Columbia were determined for 729 of these events; 584 were classified as earthquakes and 145 as known or suspected blasts. The remaining 875 processed events include teleseisms (218 events), regional events outside the PNSN (102), and unlocated events within the PNSN. Unlocated events within the PNSN include very small earthquakes and some known blasts. Frequent mining blasts occur near Centralia, Washington and we routinely locate some of them.

Table 3A is a listing of all earthquakes reported to have been felt during this quarter. Table 3B is a listing of earthquakes magnitude 2.5 or greater with reasonably constrained focal mechanisms from P-wave first motions. Table 4, located at the end of this report, is this quarter's catalog of earthquakes M 2.0 or greater, located within the network - between 42-49.5 degrees north latitude and 117-125.3 degrees west longitude.

Fig. 2 shows earthquakes with magnitude greater than or equal to 0.0 ( $M_c \ge 0$ ).

Fig. 3 shows blasts and probable blasts ( $M_c \ge 0$ ).

Fig. 4 shows earthquakes located near Mt. Rainier ( $M_c \ge 0$ ).

Fig. 5 shows earthquakes located at Mt. St. Helens  $(M_c \ge 0)$ .

Fig. 6 shows reasonably well-constrained focal mechanisms for earthquakes with M 2.5 this quarter.

|                   |        | TABLE 3A | - Felt Earth | iquakes d | luring the 2nd Quarter of 2001   |      |          |
|-------------------|--------|----------|--------------|-----------|----------------------------------|------|----------|
| DATE-(UTC)-TIME   | LAT(N) | LON(W)   | DEPTH        | MAG       | COMMENTS                         | CIIM | ShakeMap |
| 01/02/14 03:54:54 | 48.76  | 123.12   | 20.9         | 2.3       | 26.0 km NNW of Friday Harbor, WA |      |          |
| 01/04/07 16:02:35 | 48.72  | 124.76   | 41.8         | 3.9       | 90.6 km NNW of Forks, WA         | х    |          |
| 01/06/10 13:19:11 | 47.16  | 123.50   | 40.7         | 5.0       | 18.3 km N of Satsop, WA          | х    | х        |
| 01/06/25 14:15:22 | 47.68  | 117.39   | 10.5         | 3.9       | 1.3 km NNE of Spokane, WA        | х    |          |
| 01/06/25 15:01:27 | 47.70  | 117.41   | 11.1         | 3.4       | 3.4 km N of Spokane, WA          |      |          |
| 01/06/25 16:49:16 | 47.73  | 117.47   | 0.0          | 2.3       | 9.0 km NNW of Spokane, WA        |      |          |
| 01/06/25 22:58:13 | 47.72  | 117.46   | 0.0          | 2.3       | 7.0 km NW of Spokane, WA         |      |          |
| 01/06/26 01:21:21 | 47.75  | 117.48   | 0.0          | 2.1       | 11.4 km NNW of Spokane, WA       |      |          |
| 01/06/26 05:52:26 | 47.75  | 117.48   | 8.0          | 2.4       | 10.9 km NW of Spokane, WA        |      |          |
| 01/06/27 09:07:45 | 47.72  | 117.45   | 0.4          | 2.4       | 6.8 km NW of Spokane, WA         |      |          |
| 01/06/27 14:45:37 | 47.70  | 117.41   | 7.3          | 2.9       | 4.2 km N of Spokane, WA          | x    |          |
| 01/06/28 07:51:42 | 47.69  | 117.43   | 0.5          | 2.1       | 3.6 km NW of Spokane, WA         |      |          |
| 01/06/28 11:47:48 | 47.66  | 117.41   | 0.2          | 0.7       | 1.0 km WSW of Spokane, WA        |      |          |
| 01/06/29 01:13:27 | 47.67  | 117.41   | 0.3          | 2.3       | 1.0 km NNW of Spokane, WA        |      |          |
| 01/06/30 01:23:31 | 46.85  | 121.97   | 7.7          | 3.3       | 16.2 km W of Mt Rainier, WA      | х    | -        |

TABLE 3B - Earthquakes M 2.5 or larger during the 2nd Quarter of 2001

| Focal me          | Focal mechanisms noted where computed. Some earthquakes have more than one possible mechanism. |         |      |     |                                  |        |      |      |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------|---------|------|-----|----------------------------------|--------|------|------|--|--|--|--|--|
| DATE-(UTC)-TIME   | LAT(N)                                                                                         | LON(W)  | DÉP  | MAG | COMMENTS                         | STRIKE | DIP  | RAKE |  |  |  |  |  |
| yy/mm/dd hh:mm:ss | deg.                                                                                           | deg.    | km   |     |                                  | deg.   | deg. | deg. |  |  |  |  |  |
| 01/04/07 16/02/35 | 48.72N                                                                                         | 124.77W | 41.8 | 3.9 | 90.6 km NNW of Forks, WA         | -      | -    | -    |  |  |  |  |  |
| 01/04/24 13/21/29 | 46.63N                                                                                         | 120.59W | 13.5 | 2.6 | 7.0 km WNW of Yakima, Wa         | 0      | 20   | 171  |  |  |  |  |  |
| 01/04/25 20/50/07 | 48.77N                                                                                         | 119.03W | 0.7  | 2.6 | 60.8 km NE of Okanogan, WA       | -      | -    | -    |  |  |  |  |  |
| 01/05/06 15/11/06 | 45.25N                                                                                         | 123.53W | 54.2 | 2.7 | 33.6 km SE of Tillamook, OR      | 120    | 5    | 10   |  |  |  |  |  |
| 01/05/10 20/51/34 | 42.20N                                                                                         | 124.45W | 31.4 | 2.6 | 53.2 km NNW of Crescent City, CA | -      | -    | -    |  |  |  |  |  |
| 01/05/11 06/25/54 | 47.23N                                                                                         | 119.35W | 11.1 | 3.3 | 12.4 km NNW of Moses Lake, WA    | 95     | 40   | 60   |  |  |  |  |  |
| 01/05/14 12/54/12 | 47.63N                                                                                         | 119.69W | 12.6 | 2.6 | 30.6 km W of Coulee City, WA     | 35     | 35   | 0    |  |  |  |  |  |
| 01/06/07 12/15/22 | 48.49N                                                                                         | 124.37W | 40.0 | 2.9 | 60.6 km N of Forks, WA           | 330    | 85   | -160 |  |  |  |  |  |
| 01/06/07 12/45/42 | 46.96N                                                                                         | 119.52W | 20.1 | 2.6 | 25.5 km SW of Moses Lake, WA     | 115    | 30   | 110  |  |  |  |  |  |
|                   |                                                                                                |         |      |     |                                  | 290    | 65   | 110  |  |  |  |  |  |
| 01/06/10 13/19/11 | 47.17N                                                                                         | 123.50W | 40.7 | 5.0 | 18.3 km N of Satsop, WA          | 130    | 40   | -100 |  |  |  |  |  |
| 01/06/18 06/49/54 | 45.19N                                                                                         | 120.11W | 0.0  | 2.6 | 7.9 km SE of Condon, OR          | -      | -    | -    |  |  |  |  |  |
| 01/06/25 14/15/22 | 47.68N                                                                                         | 117.40W | 10.5 | 3.9 | 1.3 km NNE of Spokane, WA        | 35     | 55   | -60  |  |  |  |  |  |
| 01/06/25 15/01/27 | 47.70N                                                                                         | 117.41W | 11.1 | 3.4 | 3.4 km N of Spokane, WA          | 170    | 40   | -159 |  |  |  |  |  |
| 01/06/25 15/05/66 | 47.71N                                                                                         | 117.45W | 0.4  | 2.8 | 5.3 km NW of Spokane, WA         | -      | -    | -    |  |  |  |  |  |
| 01/06/27 14/45/37 | 47.71N                                                                                         | 117.41W | 7.3  | 2.9 | 4.2 km N of Spokane, WA          | -      | -    | -    |  |  |  |  |  |
| 01/06/30 01/23/31 | 46.86N                                                                                         | 121.97W | 7.7  | 3.3 | 16.2 km W of Mt Rainier, WA      | 125    | 50   | 80   |  |  |  |  |  |

### **OREGON SEISMICITY**

During the second quarter of 2001, a total of 38 earthquakes were located in Oregon between 42.0° and 45.5° north latitude, and between 117° and 125° west longitude. None of the earthquakes in Oregon this quarter were reported felt. The most interesting feature of seismic activity in Oregon this quarter was a

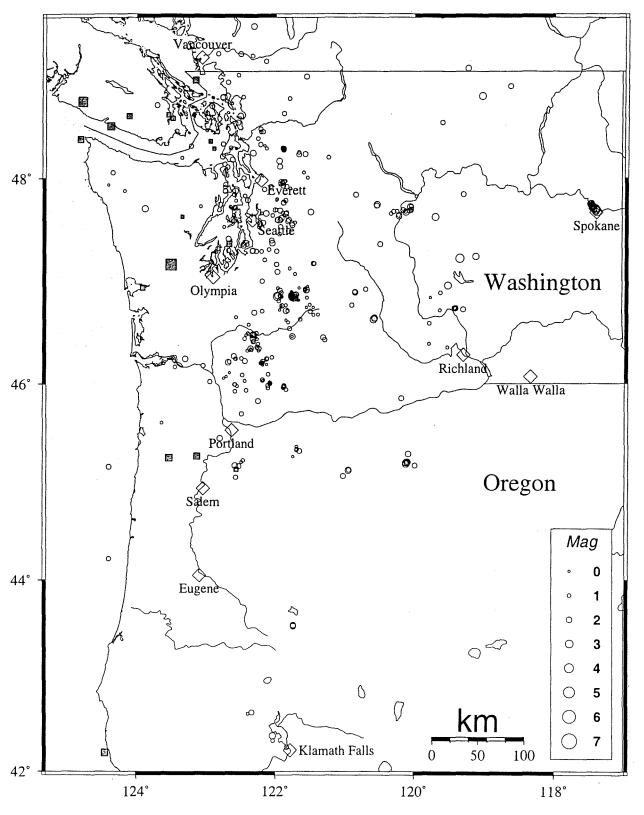



Figure 2. Located earthquakes, magnitude > 0, 2nd quarter, 2001. Filled squares indicate earthquakes with depth greater than 30km. Unfilled diamonds represent cities.

- 13 -

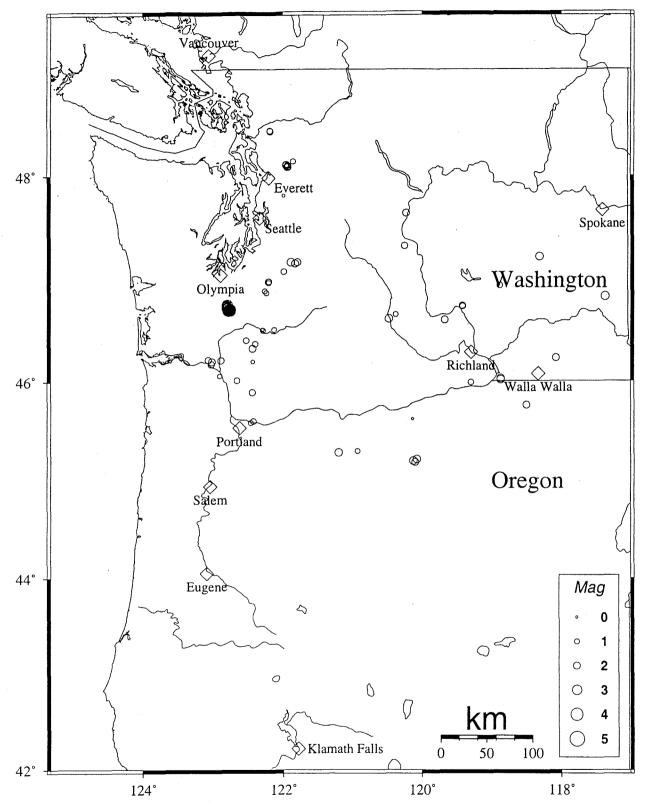
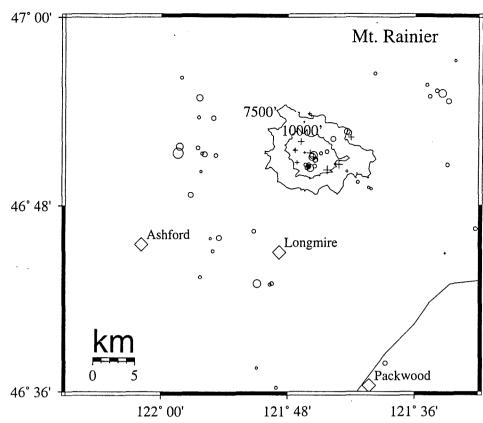
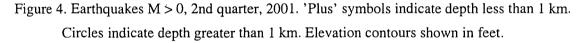





Figure 3. Blasts and probable blasts, 2nd quarter, 2001. Unfilled diamonds represent cities.





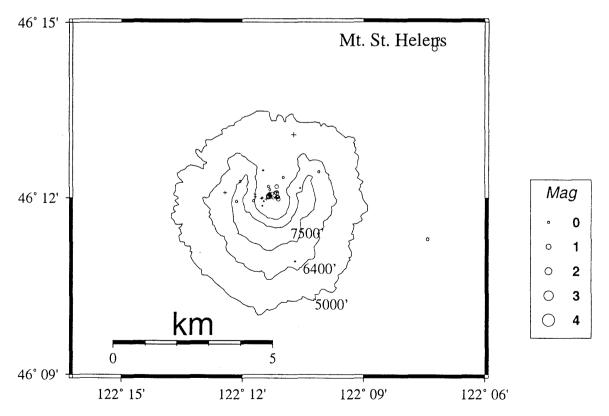



Figure 5. Earthquakes M > 0, 2nd quarter, 2001. 'Plus' symbols indicate depth less than 1 km. Circles indicate depth greater than 1 km. Elevation contours shown in feet.

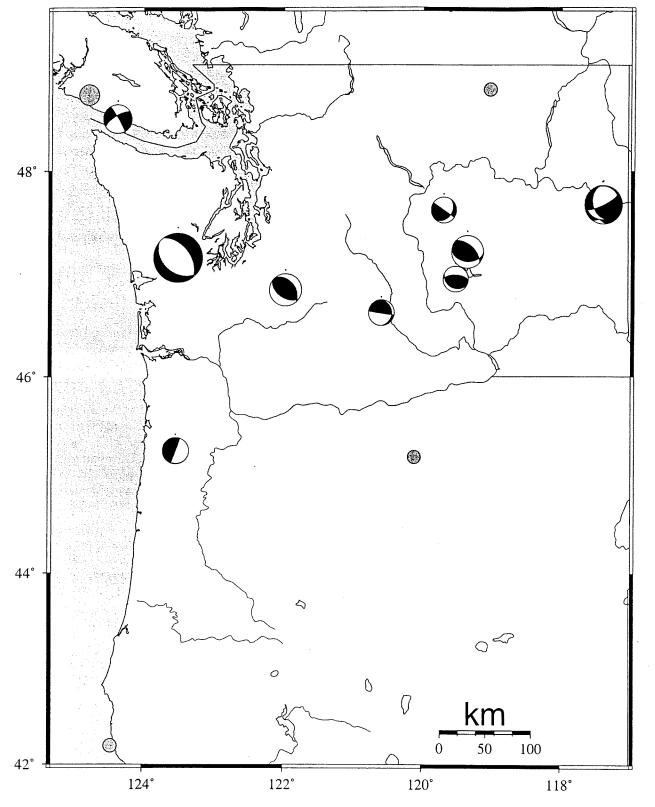



Figure 6. Events and fault plane solutions, 2nd quarter 2001, Magnitude greater than or equal to 2.5. Focal symbol size reflects earthquake magnitude. Events without fault plane solutions are shown as filled dots.

- 16 -

M 2.7 earthquake on May 6 located at a depth of 54 km about 34 km southeast of Tillamook. Events of this depth are unusual in Oregon.

In the Klamath Falls area, six earthquakes occurred in the second quarter of 2001. Since 1994, most earthquakes in the Klamath Falls area have been considered aftershocks of a pair of damaging earthquakes in September of 1993. The 1993 earthquakes were followed by a vigorous aftershock sequence which decreased over time.

#### WESTERN WASHINGTON SEISMICITY

During the second quarter of 2001, 477 earthquakes were located between 45.5° and 49.5° north latitude and between 121° and 125.3° west longitude. Three earthquakes were felt this quarter in western Washington. Details are in Table 3.

The largest felt earthquake in western Washington was a magnitude 5.0 earthquake on June 10 at 13:19 UTC. This earthquake was located near Satsop, Washington at a depth of about 41 km. A larger earthquake (Mw=5.8) occurred nearby (about 11 km SSE) and at a similar depth in July of 1999. Like the Feb. 2001 Nisqually earthquake, these are Benioff zone earthquakes within the subducting oceanic plate. The June 10 earthquake was well recorded by strong motion instruments in the Puget Sound. A ShakeMap is available at:

#### http://spike.ess.washington.edu/shake/0106101319/intensity.html

and a CIIM "felt" map at:

### http://pasadena.wr.usgs.gov/shake/pnw/STORE/X6101319/ciim display.html

The CIIM web site received nearly 1500 "felt" reports from more than 200 different zip codes around Puget Sound. No damage was reported. The amplitude of shaking (PGA) in the June 10 quake was considerably less (about an order of magnitude) than in the Nisqually earthquake of Feb., 2001.

### CASCADE VOLCANOS

**Mount Rainier Area:** Figure 4 shows earthquakes near Mount Rainier. The number of events in close proximity to the cone of Mt. Rainier varies over the course of the year, since the source of much of the shallow activity is presumably ice movement or avalanching at the surface, which is seasonal in nature. Events with very low frequency signals (1-3 Hz) believed to be icequakes are assigned type "L" in the catalog. Emergent, very long duration signals, probably due to rockfalls or avalanches, are assigned type "S" (see Key to Earthquake Catalog). There were 7 events flagged "L" or "S" that were located at Mount Rainier this quarter and an additional 191 "L" or "S" events were recorded, but were too small to locate reliably. Type L and S events are not shown in Fig. 4.

A total of 95 tectonic events (30 of these were smaller than magnitude 0.0, and thus are not shown in Fig. 4) were located within the region shown in Fig. 4. Of these, 30 were tectonic events located in the "Western Rainier Seismic Zone" (WRSZ), a north-south trending lineation of seismicity approximately 15 km west of the summit of Mt. Rainier (for counting purposes, the western zone is defined as 46.6-47 degrees north latitude and 121.83-122 west longitude). The largest tectonic earthquake located near Mt. Rainier this quarter was the felt magnitude 3.3 earthquake on June 30, located about 16.2 km west of the summit at a depth of about 8 km (see Tables 3A and 3B for details).

This quarter, there were 36 (20 smaller than magnitude 0.0 and thus not shown in Fig. 4) higherfrequency tectonic-style earthquakes within 5 km of the summit. The remaining events were scattered around the cone of Rainier as seen in Fig. 4.

**Mount St. Helens Area:** Figure 5 shows volcano-tectonic earthquakes near Mount St. Helens. Low frequency (L) and avalanche or rockfall events (S) are not shown. This quarter, 116 earthquakes were located at Mount St. Helens in the area shown in Fig. 5. Of these earthquakes, 39 were magnitude 0.0 or larger and 16 were deeper than 4 km. The largest tectonic earthquakes at Mount St. Helens this quarter were magnitude 1.3 events on April 17 and May 27 (UTC) located 0.3 and 2.4 km NE and NNE, resprctively, of Mount St. Helens.

No type "S" or "L" events were located at Mount St. Helens, but 140 "L" or "S" events too small to locate were recorded.

### EASTERN WASHINGTON SEISMICITY

During the second quarter of 2001, 69 earthquakes were located in eastern Washington in the area between 45.5-49.5 degrees north latitude and 117-121 degrees west longitude.

This quarter a very unusual sequence of earthquakes began in the Spokane urban area. We located 22 earthquakes (11 reported felt) within about 11 km of Gonzaga University. (Earthquake locations for Spokane are given in relation to a point at 117.405W longitude, 47.672N latitude, near the intersection of Mission Ave and Hamilton Ave and just a few blocks north of Gonzaga University.) Details are given in Table 3C.

It is a bit difficult to pinpoint exactly when the sequence commenced, as Spokane is at the edge of the PNSN, and the nearest stations, NEW and DPW are more than 60 km away from the activity. The largest earthquake in the sequence to date was on June 25. It was located beneath downtown Spokane near Gonzaga University. Magnitude estimates were 3.9 (Mc) and 3.8 (Ml using localmag). The sequence included a possible foreshock, magnitude 2.0, on May 24. It is not clear whether the May 24 event was felt, but numerous people have informed us that shocks were felt on June 24, and possibly earlier. The June 25 mainshock caused some minor damage as bricks to tumbled from a few chimneys, and a few dishes, fell from shelves, etc.

Because of the poor station coverage in the area, on June 25 the PNSN deployed equipment already on hand (for a CREST station) and installed a 6-component broad-band strong-motion station at the Spokane Public Utilities Dept (the station is named SPUD) with Internet telemetry to the UW. Reports of unrecorded felt earthquakes continued despite the new station, and the PNSN continued to record earthquakes of magnitude 2.0 and larger through June 30. Five additional PASSCAL stations were requested and these were installed between June 30 and July 2 (see details in Network Operations section). Additional felt and recorded earthquakes are continuing into early July. The neighborhoods where people report feeling continuing un-recorded shaking are confined to the part of Spokane immediately north of downtown. Reports of explosion-like sounds accompanying the shocks are common.

Very little is known about the seismic hazard to Spokane, as there is no history of damaging earthquakes in the area. Mike Zientek of the USGS Spokane Office has informed us that geologists have long suspected that the course of the Spokane River was structurally controlled. It flows east to west toward Spokane, where it abrubtly changes to a northwest direction. Hangman Creek (sometimes called Latah Creek) flows into the Spokane River near the bend along the same NW striking lineament. This lineament is clearly expressed in the topography, paricularly along Hangman Creek, which is quite straight compared to the complex dendritic pattern more commonly displayed by other drainage in this area.

However, direct evidence for faulting is skimpy:

• At Hangman Valley Golf course flood deposits are uptilted to 35 degrees.

• Well data from either side of Hangman Creek shows elevation or thickness differences in the Grande Ronde CRB flow. However, the flow was deposited onto a Miocene landscape and it is difficult to determine whether differences result from flows interacting with the ancient landscape or from faulting.

• Likewise exposures of basalt along the near "Bowl and Pitcher" in Riverside State Park differ from what is seen at "Five Mile Prarie" across the river. Again it is difficult to pinpoint the cause of this.

Looking back at the history of EQs in the area, minor damage has been caused by events outside the immediate Spokane area (e.g. Hebgen Lake quake of 1959), and there is also a history of quakes felt only locally in Spokane.

Events felt only in and around Spokane occurred in 1915, 1920, 1922, 1941, 1942, 1948, 1952, 1961 and 1962. In some instances the shaking was accompanied by explosion-like noises, and in some cases several events close together in time were reported. No extended sequence like the current activity is known.

The Spokesman Review (copies of articles kindly provided by Mike Prager of the Spokesman Review) published stories about the 1915, 1922, 1948, and 1952 events that provide summaries of what neighborhoods the events were felt in. Each earthquake was felt most strongly at one point or another along the same NW striking lineation that appears to control the paths of Hangman Creek and the Spokane River.

| TABLE 3C - Earthquakes located near Spokane during the 2nd Quarter of 2001 |        |        |       |     |      |                            |      |  |  |  |
|----------------------------------------------------------------------------|--------|--------|-------|-----|------|----------------------------|------|--|--|--|
| DATE-(UTC)-TIME                                                            | LAT(N) | LON(W) | DEPTH | MAG | FELT | COMMENTS                   | CIIM |  |  |  |
| 01/05/24 20:34:14                                                          | 47.71  | 117.45 | 0.2   | 2.0 |      | 6.1 km NW of Spokane, WA   |      |  |  |  |
| 01/06/25 14:15:22                                                          | 47.68  | 117.39 | 10.5  | 3.9 | FELT | 1.3 km NNE of Spokane, WA  | x    |  |  |  |
| 01/06/25 15:01:27                                                          | 47.70  | 117.41 | 11.1  | 3.4 | FELT | 3.4 km N of Spokane, WA    |      |  |  |  |
| 01/06/25 15:05:27                                                          | 47.75  | 117.49 | 1.6   | 1.3 |      | 11.4 km NW of Spokane, WA  |      |  |  |  |
| 01/06/25 15:06:06                                                          | 47.71  | 117.44 | 0.4   | 2.8 |      | 5.3 km NW of Spokane, WA   |      |  |  |  |
| 01/06/25 15:17:52                                                          | 47.73  | 117.46 | 3.5   | 1.9 |      | 8.2 km NNW of Spokane, WA  |      |  |  |  |
| 01/06/25 15:40:39                                                          | 47.71  | 117.47 | 2.6   | 1.8 |      | 7.4 km NW of Spokane, WA   |      |  |  |  |
| 01/06/25 16:49:16                                                          | 47.73  | 117.47 | 0.0   | 2.3 | FELT | 9.0 km NNW of Spokane, WA  |      |  |  |  |
| 01/06/25 20:48:37                                                          | 47.73  | 117.45 | 0.0   | 2.2 |      | 8.0 km NNW of Spokane, WA  |      |  |  |  |
| 01/06/25 22:58:13                                                          | 47.72  | 117.46 | 0.0   | 2.3 | FELT | 7.0 km NW of Spokane, WA   |      |  |  |  |
| 01/06/26 01:21:21                                                          | 47.75  | 117.48 | 0.0   | 2.1 | FELT | 11.4 km NNW of Spokane, WA |      |  |  |  |
| 01/06/26 02:04:45                                                          | 47.74  | 117.46 | 3.8   | 1.5 |      | 9.3 km NNW of Spokane, WA  |      |  |  |  |
| 01/06/26 05:52:26                                                          | 47.75  | 117.48 | 8.0   | 2.4 | FELT | 10.9 km NW of Spokane, WA  |      |  |  |  |
| 01/06/26 09:21:15                                                          | 47.75  | 117.47 | 0.0   | 1.8 |      | 11.1 km NNW of Spokane, WA |      |  |  |  |
| 01/06/26 10:11:11                                                          | 47.76  | 117.46 | 3.5   | 1.5 |      | 11.1 km NNW of Spokane, WA |      |  |  |  |
| 01/06/27 09:07:45                                                          | 47.72  | 117.45 | 0.4   | 2.4 | FELT | 6.8 km NW of Spokane, WA   |      |  |  |  |
| 01/06/27 14:45:37                                                          | 47.70  | 117.41 | 7.3   | 2.9 | FELT | 4.2 km N of Spokane, WA    | x    |  |  |  |
| 01/06/27 18:35:57                                                          | 47.69  | 117.43 | 0.5   | 1.5 |      | 3.9 km NW of Spokane, WA   |      |  |  |  |
| 01/06/28 07:51:42                                                          | 47.69  | 117.43 | 0.5   | 2.1 | FELT | 3.6 km NW of Spokane, WA   |      |  |  |  |
| 01/06/28 11:47:48                                                          | 47.66  | 117.41 | 0.2   | 0.7 | FELT | 1.0 km WSW of Spokane, WA  |      |  |  |  |
| 01/06/29 01:13:27                                                          | 47.67  | 117.41 | 0.3   | 2.3 | FELT | 1.0 km NNW of Spokane, WA  |      |  |  |  |
| 01/06/29 11:09:13                                                          | 47.81  | 117.57 | 0.0   | 0.0 |      | 20.3 km NW of Spokane, WA  |      |  |  |  |

Times, locations, and depths of all felt earthquakes in the PNSN region this quarter are given in Table 3A.

### OTHER SOURCES OF EARTHQUAKE INFORMATION

We provide automatic computer-generated alert messages about significant Washington and Oregon earthquakes by e-mail, FAX or via the pager-based RACE system to institutions needing such information, and we regularly exchange phase data via e-mail with other regional seismograph network operators. The "Outreach Activities" section describes how to access PNSN data via e-mail, Internet, and World-Wide-Web. To request additional information by e-mail, contact seis info@ess.washington.edu.

Earthquake information in the quarterlies has been published in final form by the Washington State Department of Natural Resources as information circulars entitled "Earthquake Hypocenters in Washington and Northern Oregon" covering the period 1970-1989 (see circulars Nos. 53, 56, 64-66, 72, 79, 82-84, and 89). These circulars, plus circular No. 85, "Washington State Earthquake Hazards", are available from Washington Dept. of Natural Resources, Division of Geology and Earth Resources, Post Office Box 47007, Olympia, WA. 98504-7007, or by telephone at (360) 902-1450.

Several excellent maps of Pacific Northwest seismicity are available. A very colorful perspectiveview map (18" x 27") entitled "Major Earthquakes of the Pacific Northwest" depicts selected epicenters of strong earthquakes (magnitudes > 5.1) that have occurred in the Pacific Northwest. A more detailed fullcolor map is called "Earthquakes in Washington and Oregon 1872-1993", by Susan Goter (USGS Open-File Report 94-226A). It is accompanied by a companion pamphlet "Washington and Oregon Earthquake History and Hazards", by Yelin, Tarr, Michael, and Weaver (USGS Open-File Report 94-226B). The pamphlet is also available separately. Maps can be ordered from: "Earthquake Maps", U.S. Geological Survey, Box 25046, Federal Center, MS 967, Denver, CO 80225, phone (303) 273-8477. The price of each map is \$12. (including US shipping and handling).

USGS Cascades Volcano Observatory has a video, "Perilous Beauty: The Hidden Dangers of Mount Rainier", about the risk of lahars from Mount Rainier. Copies are available through: North west Interpretive Association (NWIA), 909 First Avenue Suite 630, Seattle WA 98104, Telephon e: (206) 220-4141, Fax: (206) 220-4143.

Other regional agencies provide earthquake information. These include the Geological Survey of Canada (Pacific Geoscience Centre, Sidney, B.C.; (250) 363-6500, FAX (250) 363-6565), which produces monthly summaries of Canadian earthquakes; the US Geological Survey which produces weekly reports called "Seismicity Reports for Northern California" (USGS, attn: Steve Walter, 345 Middlefield Rd, MS-977, Menlo Park, CA, 94025) and "Weekly Earthquake Report for Southern California" (USGS, attn: Dr. Kate Hutton or Dr. Lucy Jones, CalTech, Pasadena, CA.).

# Key to Earthquake Catalog in Table 4

- TIME Origin time is calculated for each earthquake on the basis of multi-station arrival times. Time is given in Coordinated Universal Time (UTC), in hours:minutes:seconds. To convert to Pacific Standard Time (PST) subtract eight hours, or to Pacific Daylight Time subtract seven hours.
- LAT North latitude of the epicenter, in degrees and minutes.
- LONG West longitude of the epicenter, in degrees and minutes.
- **DEPTH** The depth, given in kilometers, is usually freely calculated from the arrival-time data. In some instances, the depth must be fixed arbitrarily to obtain a convergent solution. Such depths are noted by an asterisk (\*) in the column immediately following the depth. A \$ or a # following the depth mean that the maximum number of iterations has been exceeded without meeting convergence tests and both the location and depth have been fixed.
- MAG Coda-length magnitude M<sub>c</sub>, an estimate of local magnitude M<sub>L</sub> (Richter, C.F., 1958, Elementary Seismology: W.H. Freeman and Co., 768p), calculated using the coda-length/magnitude relationship determined for Washington (Crosson, R.S., 1972, Bull. Seism. Soc. Am., v. 62, p. 1133-1171). Where blank, data were insufficient for a reliable magnitude determination. Normally, the only earthquakes with undetermined magnitudes are very small ones. Magnitudes may be revised as we improve our analysis procedure.
- NS/NP NS is the number of station observations, and NP the number of P and S phases used to calculate the earthquake location. A minimum of three stations and four phases are required. Generally, more observations improve the quality of the solution.
- GAP Azimuthal gap. The largest angle (relative to the epicenter) containing no stations.
- RMS The root-mean-square residual (observed arrival time minus predicted arrival time) at all stations used to locate the earthquake. It is only useful as a measure of the quality of the solution when 5 or more well-distributed stations are used in the solution. Good solutions are normally characterized by RMS values less than about 0.3 sec.
- Q Two Quality factors indicate the general reliability of the solution (A is best quality, D is worst). Similar quality factors are used by the USGS for events located with the computer program HYPO71. The first letter is a measure of the hypocenter quality based on travel-time residuals. For example: A quality requires an RMS less than 0.15 sec while an RMS of 0.5 sec or more is D quality (estimates of the uncertainty in hypocenter location also affect this quality parameter). The second letter of the quality code depends on the spatial distribution of stations around the epicenter, i.e. number of stations, their azimuthal distribution, and the minimum distance (DMIN) from the epicenter to a station. Quality A requires a solution with 8 or more phases,  $GAP \le 90^{\circ}$  and  $DMIN \le (5 \text{ km or depth, whichever is greater})$ . If the number of phases, NP, is 5 or fewer or  $GAP > 180^{\circ}$  or DMIN > 50 km the solution is assigned quality D.
- MOD The crustal velocity model used in location calculations.
  - P3 Puget Sound model
  - C3 Cascade model
  - S3 Mt. St. Helens model including Elk Lake
  - N3 northeastern model
  - E3 southeastern model
  - O0 Oregon model
  - K3 Southern Oregon, Klamath Falls area model
  - R0 and J1 Regional and Offshore models
- TYP Events flagged in Table 4 use the following code:
  - F earthquake reported to have been felt
  - **P** probable explosion
  - L low frequency earthquake (e.g. glacier movement, volcanic activity)
  - H handpicked from helicorder records
  - S Special event (e.g. rockslide, avalanche, volcanic steam emission, harmonic tremor, sonic boom), not a manmade explosion or tectonic earthquake
    - X known explosion

### TABLE 4

Tectonic Earthquakes, Magnitude 2.0 or larger, Second Quarter, 2001.

Within an area 42-49.5 degrees north latitude and 117-125.3 degrees west longitude.

|   |          |                            |                      |                        | Apr 2            | 2001       |                |            |              |          |          |     |
|---|----------|----------------------------|----------------------|------------------------|------------------|------------|----------------|------------|--------------|----------|----------|-----|
|   | DAY      | TIME                       | LAT                  | LON                    | DEPTH            | M          | NS/NP          | GAP        | RMS          | Q        | MOD      | TYP |
|   | 2        | 05:43:58.42                | 47 43.49             | 120 03.15              | 2.76*            | 2.3        | 18/20          | 47         | 0.29         | BB       | N3       |     |
|   | 6        | 09:33:30.95                | 46 26.49             | 122 19.01              | 11.07            | 2.0        | 32/39          | 48         | 0.15         | BA       | S3       |     |
|   | 7        | 00:46:28.33                | 48 55.10             | 123 08.87              | 40.13*           | 2.1        | 5/05           | 320        | 0.11         | BD       | P3       |     |
|   | 7        | 16:02:35.13                | 48 43.20             | 124 46.13              | 41.80            | 3.9        | 17/18          | 284        | 0.34         | CD       | P3       | F   |
|   | 8        | 01:04:37.65                | 45 11.25             | 120 06.87              | 1.36*            | 2.4        | 10/11          | 164        | 0.25         | BC       | 00       |     |
|   | 8        | 12:49:01.18                | 47 14.78             | 119 07.01              | 1.09             | 2.4        | 24/25          | 106        | 0.18         | BC       | N3       |     |
|   | 10       | 04:40:19.11                | 42 22.38             | 122 01.78              | 9.09*            | 2.3        | 9/10           | 126        | 0.32         | CB       | K3       |     |
|   | 13       | 12:34:06.49                | 47 40.51             | 120 07.00              | 5.59             | 2.3        | 27/30          | 50         | 0.27         | BC       | N3       |     |
|   | 14       | 07:21:57.67                | 47 36.05             | 121 57.07              | 10.96            | 2.2        | 43/43          | 41         | 0.19         | BA       | P3       |     |
|   | 16       | 14:50:01.88                | 46 51.09             | 121 45.57              | 0.94#            | 2.4        | 35/38          | 59         | 0.20         | BA       | C3       |     |
|   | 16       | 18:44:50.79                | 46 51.19             | 121 45.56              | 1.17*            | 2.2        | 30/33          | 78         | 0.16         | BA       | C3       |     |
|   | 20       | 01:18:24.13                | 48 22.26             | 124 47.81              | 36.12            | 2.2        | 10/14          | 260        | 0.26         | BD       | P3       |     |
|   | 23       | 08:33:53.72                | 46 53.84             | 120 51.32              | 5.41             | 2.0        | 24/25          | 66<br>57   | 0.34         | CC<br>CB | C3<br>C3 |     |
|   | 24       | 03:36:15.98                | 46 55.13             | 121 33.40              | 3.09             | 2.2        | 42/45<br>44/46 | 57<br>32   | 0.35<br>0.39 | CA       | E3       |     |
|   | 24       | 13:21:29.90                | 46 37.77             | 120 35.38<br>122 18.58 | 13.48\$<br>19.04 | 2.6<br>2.3 | 44/46          | 32         | 0.39         | BA       | S3       |     |
|   | 24<br>24 | 13:37:48.34                | 46 28.90<br>46 38.64 | 122 18.38              | 9.77\$           | 2.3        | 26/26          | 69         | 0.18         | CB       | E3       |     |
|   | 24<br>25 | 17:39:46.89<br>20:50:07.46 | 46 38.64 48 46.37    | 120 34.49              | 9.77\$<br>0.70\$ | 2.2        | 15/18          | 147        | 0.52         | DD       | N3       |     |
|   | 25<br>26 | 20:30:07.46 05:48:45.50    | 48 40.37 46 12.59    | 122 40.32              | 18.28            | 2.0        | 22/24          | 132        | 0.13         | AB       | C3       |     |
|   | 20       | 00.46.40.00                | 40 12.39             | 122 40.52              | 10.20            | 2.0        | 2424           | 152        | 0.15         | n D      | 05       |     |
|   |          |                            |                      |                        | May 2            | 2001       |                |            |              |          |          |     |
|   | DAV      |                            | LAT                  | LON                    | DEPTH            | 2001<br>M  | NS/NP          | GAP        | RMS          | Q        | MOD      | ТҮР |
|   | DAY      | TIME                       |                      | 120 56.80              | 19.15            | 2.2        | 10/10          | 92         | 0.12         | AB       | 00       | 111 |
|   | 4        | 05:28:10.32                | 45 07.42<br>49 01.86 | 119 14.26              | 0.02*            | 2.2        | 6/07           | 286        | 0.12         | BD       | N3       |     |
|   | 4<br>6   | 05:34:26.62<br>15:11:06.86 | 49 01.80             | 123 31.75              | 54.22            | 2.1        | 38/38          | 166        | 0.18         | BC       | 00       |     |
|   | 8        | 15:03:19.19                | 46 20.61             | 122 20.93              | 17.80*           | 2.0        | 26/28          | 75         | 0.12         | AA       | S3       |     |
|   | 10       | 20:51:34.21                | 42 11.85             | 124 26.87              | 31.35\$          | 2.6        | 7/07           | 236        | 0.29         | DD       | K3       |     |
|   | 11       | 06:25:54.83                | 47 13.75             | 119 20.90              | 11.06            | 3.3        | 35/35          | 81         | 0.26         | BC       | N3       |     |
|   | 14       | 12:54:12.73                | 47 37.80             | 119 41.60              | 12.65\$          | 2.6        | 21/26          | 78         | 0.15         | AB       | N3       |     |
|   | 15       | 04:31:04.47                | 48 14.36             | 122 19.36              | 17.25            | 2.0        | 24/32          | 64         | 0.23         | BB       | P3       |     |
|   | 19       | 16:18:39.83                | 47 39.83             | 122 08.02              | 6.73             | 2.1        | 34/34          | 45         | 0.13         | AB       | P3       |     |
|   | 24       | 20:34:14.99                | 47 42.97             | 117 27.13              | 0.24#            | 2.0        | 7/10           | 206        | 0.26         | BD       | N3       |     |
|   | 31       | 01:18:39.05                | 45 11.82             | 120 05.72              | 2.85             | 2.0        | 21/27          | 205        | 0.32         | CD       | 00       |     |
|   |          |                            |                      |                        |                  |            |                |            |              |          |          |     |
|   |          |                            |                      |                        | June 2           | 2001       |                |            |              |          |          |     |
| ) | DAY      | TIME                       | LAT                  | LON                    | DEPTH            | М          | NS/NP          | GAP        | RMS          | Q        | MOD      | TYP |
|   | 2        | 12:31:04.42                | 47 42.79             | 123 52.40              | 0.02*            | 2.4        | 30/33          | 79         | 0.24         | BC       | P3       |     |
|   | 2        | 17:08:00.70                | 45 15.95             | 123 07.76              | 30.92            | 2.3        | 35/37          | 124        | 0.22         | BB       | 00       |     |
|   | 4        | 06:07:44.62                | 43 31.21             | 121 44.11              | 10.10\$          | 2.1        | 14/14          | 160        | 0.19         | CD       | 00       |     |
|   | 6        | 14:52:19.84                | 47 44.85             | 120 32.24              | 12.63            | 2.3        | 20/20          | 65         | 0.54         | DA       | C3       |     |
|   | 7        | 12:15:22.57                | 48 29.56             | 124 21.92              | 39.98            | 2.9        | 16/16          | 208        | 0.15         | BD       | P3       |     |
|   | 7        | 12:45:42.64                | 46 57.74             | 119 31.06              | 20.08            | 2.6        | 27/29          | 51         | 0.13         | AA       | E3       | -   |
|   | 10       | 13:19:11.29                | 47 10.04             | 123 30.15              | 40.71\$          | 5.0        | 99/**          | 89         | 0.29         | BA       | P3       | F   |
|   | 15       | 08:53:29.33                | 45 12.10             | 120 06.45              | 0.02*            | 2.5        | 15/16          | 171        | 0.24         | BC       | 00       |     |
|   | 17       | 15:41:32.46                | 47 36.44             | 122 35.69              | 22.93            | 2.2        | 45/46          | 49         | 0.13         | AA       | P3       |     |
|   | 18       | 06:49:54.26                | 45 11.38             | 120 06.61              | 0.03*            | 2.6        | 17/17          | 172        | 0.36         | CC       | 00       |     |
|   | 21       | 06:46:09.62                | 46 42.98             | 121 50.87              | 7.36             | 2.1        | 46/47<br>23/28 | 39         | 0.16<br>0.27 | BA<br>BC | C3<br>P3 |     |
|   | 21       | 19:45:38.72                | 48 45.53             | 122 44.70              | 2.07<br>10.52    | 2.3<br>3.9 | 19/19          | 144<br>205 | 0.27         | BD       | N3       | F   |
|   | 25       | 14:15:22.97                | 47 40.91             | 117 23.82              | 11.14            | 3.4        | 18/18          | 203        | 0.29         | DD       | N3       | F   |
|   | 25<br>25 | 15:01:27.71<br>15:06:06.85 | 47 42.10<br>47 42.62 | 117 24.68<br>117 26.80 | 0.43\$           | 5.4<br>2.8 | 13/14          | 203        | 0.51         | DD       | N3       | r   |
|   | 25<br>25 | 16:49:16.71                | 47 42.02 47 44.33    | 117 28.29              | 0.433            | 2.8        | 9/09           | 200        | 0.34         | BD       | N3       | F   |
|   | 25<br>25 | 20:48:37.07                | 47 44.55 47 44.05    | 117 28.29              | 0.03*            | 2.2        | 12/14          | 141        | 0.29         | CD       | N3<br>N3 | 1.  |
|   | 25       | 20:48:37:07                | 47 44.05             | 117 27.59              | 0.03#            | 2.3        | 14/14          | 141        | 0.56         | DD       | N3       | F   |
|   | 26       | 01:21:21.37                | 47 45.43             | 117 29.25              | 0.02*            | 2.1        | 5/07           | 213        | 0.24         | BD       | N3       | F   |
|   | 26       | 05:52:26.63                | 47 45.13             | 117 29.25              | 8.02             | 2.4        | 14/15          | 194        | 0.64         | DD       | N3       | , F |
|   | 27       | 09:07:45.96                | 47 43.13             | 117 27.56              | 0.36\$           | 2.4        | 18/21          | 135        | 0.45         | DD       | N3       | F   |
|   | 27       | 14:45:37.91                | 47 42.55             | 117 24.83              | 7.27             | 2.9        | 18/20          | 203        | 0.74         | DD       | N3       | F   |
|   |          |                            |                      |                        |                  |            |                |            |              |          | · -      |     |

| • | 22 | - |  |
|---|----|---|--|
|   |    |   |  |

|     |             |          |           | June 2001 | cont'd |       |     |      |    |     |     |
|-----|-------------|----------|-----------|-----------|--------|-------|-----|------|----|-----|-----|
| DAY | TIME        | LAT      | LON       | DEPTH     | М      | NS/NP | GAP | RMS  | Q  | MOD | TYP |
| 28  | 07:51:42.14 | 47 41.71 | 117 26.32 | 0.52#     | 2.1    | 6/06  | 143 | 0.59 | DC | N3  | F   |
| 29  | 01:13:27.70 | 47 40.78 | 117 24.70 | 0.29\$    | 2.3    | 4/06  | 195 | 0.51 | DD | N3  | F   |
| 30  | 01:23:31.81 | 46 51.34 | 121 58.36 | 7.66      | 3.3    | 65/66 | 25  | 0.26 | BB | C3  | F   |

. -

# QUARTERLY NETWORK REPORT 2001-C on Seismicity of Washington and Oregon

July 1 through September 30, 2001

Pacific Northwest Seismograph Network Dept. of Earth and Space Sciences Box 351310 University of Washington Seattle, Washington 98195-1650

This report is prepared as a preliminary description of the seismic activity in Washington State and Oregon. Information contained in this report should be considered preliminary, and not cited for publication without checking directly with network staff. The views and conclusions contained in this document should not be interpreted as necessarily representing the official policies, either express or implied, of the U.S. Government.

Seismograph network operation in Washington and Oregon is supported by the following contracts:

U.S. Geological Survey Joint Operating Agreement 01-HQ-AG-0011

and

Pacific Northwest National Laboratory, operated by Battelle for the U.S. Dept. of Energy Contract 259116-A-B3

પ્ટ

# CONTENTS

| Introduction                                              | 2  |
|-----------------------------------------------------------|----|
| Introduction<br>Network Operations                        | 2  |
| Strong Motion Instrument Update                           | 2  |
| CREST Instrument Update                                   | 2  |
| Temporary Spokane stations                                |    |
| Other news about stations, operations, and personnel      | 5  |
| Data recording and EARTHWORM update                       | 5  |
| Stations used for locations                               | 6  |
| Outreach Activities                                       |    |
| Earthquake Data                                           | 12 |
| Oregon Seismicity                                         | 18 |
| Western Washington Seismicity                             | 18 |
| Cascade Volcanos                                          |    |
| Mount Rainier Area                                        | 18 |
| Mount St. Helens Area                                     | 19 |
| Eastern Washington Seismicity                             | 19 |
| SPECIAL REPORT - Spokane Earthquake Activity, Summer 2001 | 19 |
| Further Information                                       | 22 |
| Key to Earthquake and Blast Catalog                       | 24 |
| Earthquake and Blast Catalog, Events M 2.0 or larger      | 25 |

# FIGURES

| 1. | Map of seismometer stations operating in 2001 3rd quarter                    | 3 |
|----|------------------------------------------------------------------------------|---|
| 1b | . Map of Puget Sound area seismometer stations operating in 2001 3rd quarter | 4 |
|    | Map showing selected epicenters for 2001 3rd quarter                         |   |
|    | Map showing blasts and probable blasts for 2001 3rd quarter                  |   |
|    | Map showing Mt. Rainier epicenters for 2001 3rd quarter                      |   |
|    | Map showing Mt. St. Helens epicenters for 2001 3rd quarter                   |   |
|    | Map showing fault-plane solutions for events >2.5 magnitude                  |   |
|    | Map showing Spokane-area swarm earthquakes                                   |   |

# TABLES

| 1A. ANSS Strong-motion Station Installations during 3rd quarter 2001  | 5   |
|-----------------------------------------------------------------------|-----|
| 1B. Station outages, repairs, and installations for 3rd quarter 2001  | 6   |
| 1C. Temporary Spokane stations operating in 2nd and 3rd quarters 2001 | 6   |
| 2A. Short-period Stations operating at end of 3rd quarter 2001        | 6   |
| 2B. Broad-band Stations operating at end of 3rd quarter 2001          | 8   |
| 2C. Strong-motion Stations; operating at end of 3rd quarter 2001      |     |
| 3A. Felt earthquakes                                                  | .12 |
| 3B. Earthquakes M 2.5. Focal mechanisms indicated, if computed        | .12 |
| 3C. Earthquakes located near Spokane, 3rd quarter 2001                |     |
| 4. Catalog of earthquakes and blasts M 2.0 for 3rd quarter 2001       |     |

## INTRODUCTION

This is the third quarterly report of 2001 from the University of Washington Dept. of Earth and Space Sciences *Pacific Northwest Seismograph Network* (PNSN), covering seismicity of Washington and western Oregon.

Comprehensive quarterlies have been produced by the PNSN since the beginning of 1984. Prior to that we published quarterly reports for western Washington in 1983 and for eastern Washington from 1975 to 1983. Annual technical reports covering seismicity in Washington since 1969 are available from the U.W. Dept. of Earth and Space Sciences. Beginning in 1999, the quarterly PNSN catalog listing changed; earthquakes smaller than magnitude 2.0 are no longer listed in the quarterly reports. The complete PNSN catalog is available on-line, both through our web-site and through the CNSS catalog. We will continue to provide special coverage (figures, counts, listings, etc.) of earthquake swarms, aftershock sequences, etc.

This quarterly report discusses network operations, seismicity of the region, unusual events or findings, and our educational and outreach activities. This report is preliminary, and subject to revision. The PNSN routinely records signals from selected stations in adjoining networks. This improves our ability to locate earthquakes at the edges of our network. However, our earthquake locations may be revised if new data become available. Findings mentioned in these quarterly reports should not be cited for publication.

#### **NETWORK OPERATIONS**

Figure 1A shows a map view of stations operating during the quarter. Figure 1B is a more detailed view of stations in the Puget Sound area. Table 1B gives approximate periods of time when individual stations were inoperable. Data for Table 1B are compiled from weekly plots of network-wide teleseismic arrivals and automated and manual digital and analog signal checks, plus records of maintenance and repair visits. This quarter was a busy one, as we engaged in an ambitious season of strong-motion and CREST station installations. Details of these installations are given below.

#### Strong Motion Instrumentation and Recording Update

The PNSN strong-motion team has completed installation of twenty new ANSS strong-motion instruments in the greater Puget Sound Region during FY 2001, including 17 stations in the third quarter and 3 in the second quarter. Five of these stations are "free-field", the others are "reference". The new installations brings our strong motion total to 41 ANSS stations and 13 older stations. The station density is now comparable to that in southern California in 1998 when ShakeMap was started.

#### **CREST Instrument Update**

CREST (Consolidated Reporting of EarthquakeS and Tsumamis) instrumentation temporarily installed in Spokane (SPUD) was removed on Sept. 25, and is slated for installation at Forks, Washington at the beginning of the fourth quarter.

The Bonneville Power Administration (BPA) has agreed to site and provide telemetry for four CREST stations at BPA power substations near the coast (3 along the Oregon coast, and one in southwestern Washington). BPA completed site preparation work at these four sites by the end of September.

The Washington State Patrol has agreed to provide a site and part of the telemetry path for a CREST station at Boistfort Peak in southwestern Washington. However, the telemetry between the terminus of the State Patrol/Dept of Transportation communication system and the University of Washington is still being worked out.

#### **Temporary Spokane Stations**

At the beginning of July, following unusual seismicity in the Spokane urban area, Tom Yelin of the USGS, and UW graduate students Guy Medema and Josh Jones installed five short-period three-component PASSCAL instruments in a perimeter around Spokane. Temporary Spokane station locations are listed in Table 1C. Sites were located at private residences. No prior permissions had been given so sites were found by knocking on doors and asking. In general, residents were very willing to allow instruments to be placed on their property, including the use of their line power. The PASSCAL stations had GPS timing and recorded continuously, but had no telemetry. Data were downloaded manually, and extensive reformatting was required in order to make the data compatible with UW data and analysis programs. All five stations were set to 100 samples/sec and 16-bit resolution. The seismometers had a natural frequency of 2 Hz, and

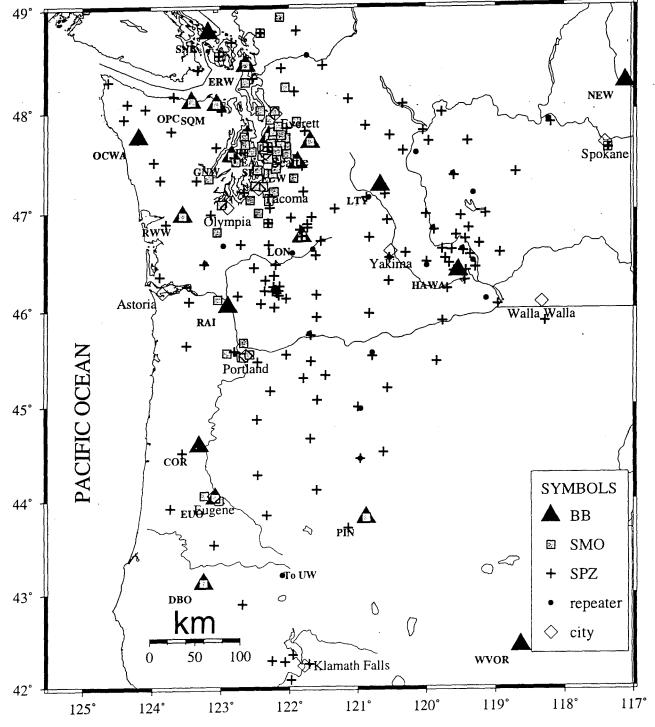



Figure 1A. Stations operating at the end of 3rd quarter, 2001. Stations shown are short period vertical (SPZ), 3-component broadband (BB), or strong motion (SMO).

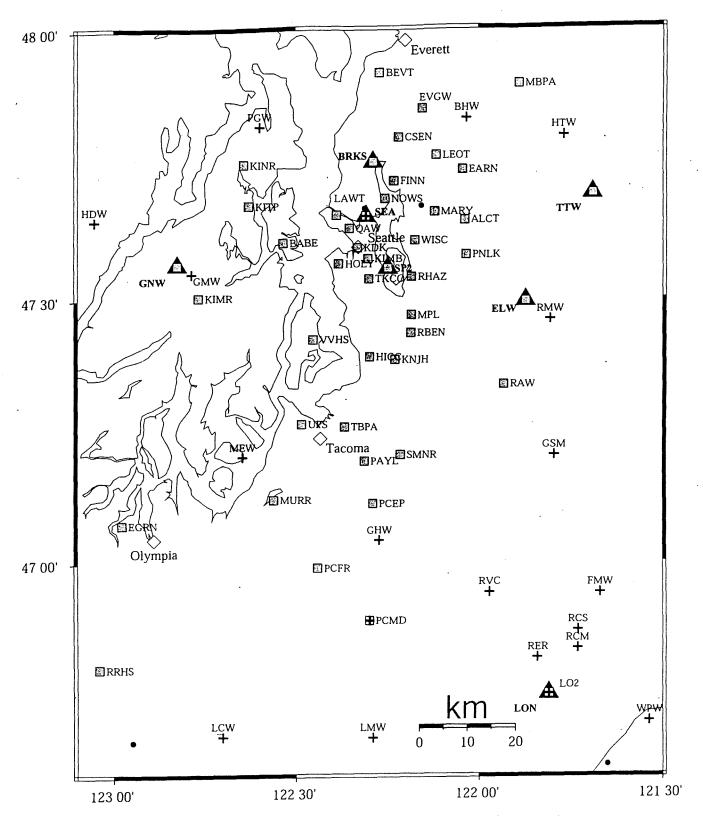



Figure 1B. Stations operating at the end of 3rd quarter, 2001. Detail of Figure 1A.

- 4 -

÷

were 3-D Mark Products L-22 instruments. Stations 1, 2 and 3 had gain=128x, and stations 4 and 5 had gain=32 x. These stations were removed on July 24 and 25. See Table 1C for locations and operation dates.

Station SPUD (also temporary), a CREST-type station with 3 BB components and 3 strong-motion components, operated at the Public Utilities Bldg. from June 26-Sept. 25. SPUD had Internet telemetry, but lacked external reference GPS timing and relied on its internal clock to time-stamp data. Permanent station SFER was installed at Spokane's Ferris High School in August. See Table 1C for location and operation dates.

## Other news about stations, operations, and personnel

Last spring we conducted a national search for a network engineer, who began work in early September. Unfortunately our new hire reconsidered after a close look at the cost of living in Seattle, and quit before the end of the month. Jim Ramey, our previous head electronics engineer, retired at the end of April and is currently working on a part-time basis. The current plan is to cover the engineer position with a rearrangement of, and additional training for, other network technical staff.

A new three-component short-period station (HUO) became operational in early July at Husband, OR following the report (in May) of ground uplift about 5 km west of South Sister volcano in the Three Sisters region of the central Oregon Cascade Range. A "Three Sisters" link has been added to the PNSN "Cascade Volcano Information" page to provide links to research and daily updates on seismicity in the area. The Three Sisters region generally has very low seismicity. The closest short-period station to the area, TCO, was repaired at the beginning of July. The seismometer was replaced. The station had been marginal for some time, but the low rate of activity makes it difficult to pinpoint a failure date. TCO is a noisy site, located in trees next to a road. It is also a target (as in "target practice") for vandalism. In other Oregon station news, short period station BUO was installed in July to replace station VRC, which had been removed due to vandalism.

In Washington station news, a new station (GPW) was installed in the Cascades on Glacier Peak. A helicopter lift of the heavy/awkward parts of the station was authorized by a special permit of the U.S. Forest service Four PNSN staff hiked in to the site to complete the installation during a three day trip in early September. Another difficult-to-access station, RCS on Mount Rainier, also required a visit from a hiking party and a near-total replacement of components.

## Data Recording and EARTHWORM Update

This quarter, *scossa* remained our main EARTHWORM computer, with *milli* serving as our primary backup and *verme* as the secondary backup. *Milli* and *verme* still serve as the principal computers for data acquisition for many of the digital stations. We are currently running EARTHWORM-V5.1.

The SUNWORM digitizer for *wiggles*, our backup system, began to have problems last year and earlier this year we received an official Intel-based EARTHWORM digitizer running under Windows NT. This quarter, we worked on the wiring configuration needed for the new digitizer.

| TABLE 1A<br>ANSS Strong Motion Station Installations 3rd quarter 2001 |              |                                        |  |  |  |  |  |
|-----------------------------------------------------------------------|--------------|----------------------------------------|--|--|--|--|--|
| Installed Station                                                     | Install Date | Comments                               |  |  |  |  |  |
| ATES                                                                  | 9/6/01       | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| BABE                                                                  | 7/31/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| EGRN                                                                  | 7/10/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| EVCC                                                                  | 8/28/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| EVGW                                                                  | 7/12/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| KDK                                                                   | 9/27/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| KICC                                                                  | 8/30/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| KNJH                                                                  | 7/9/01       | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| MBKE                                                                  | 7/19/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| OHC                                                                   | 7/26/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| SFER                                                                  | 8/9/01       | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| SMNR                                                                  | 7/17/10      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| SVOH                                                                  | 9/14/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| SWID                                                                  | 7/23/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| UWFH                                                                  | 8/2/01       | Installed (ANSS Strong Motion Station) |  |  |  |  |  |
| VVHS                                                                  | 9/20/01      | Installed (ANSS Strong Motion Station) |  |  |  |  |  |

- 5 -

| TABLE 1B           Station Outages, Repairs, and Installations 3rd quarter 2001 |                 |                                                       |  |  |  |
|---------------------------------------------------------------------------------|-----------------|-------------------------------------------------------|--|--|--|
| Station                                                                         | Outage Dates    | Comments                                              |  |  |  |
| BOW                                                                             | 12/01/00-End    | Dead because air cells have run down                  |  |  |  |
| BUO                                                                             | 7/25/01         | Installed (Short-period vertical; equipment from VRC) |  |  |  |
| ELL                                                                             | 3/16/01-7/17/01 | Began working                                         |  |  |  |
| FL2                                                                             | 7/01-8/1/01     | Seismometer cable repaired (chewed by animal)         |  |  |  |
| GPW                                                                             | 9/10/01         | Installed                                             |  |  |  |
| HICC                                                                            | 8/10/01         | Replaced K2 (ANSS Strong Motion Station)              |  |  |  |
| JUN                                                                             | 4/1/01-8/1/01   | Seismometer replaced                                  |  |  |  |
| LVP                                                                             | 8/01-9/29/01    | Seismometer replaced                                  |  |  |  |
| MARY                                                                            | 7/27/01         | Lantronix replaced because of communication loss      |  |  |  |
| NLO                                                                             | 12/1/00-End     | Dead                                                  |  |  |  |
| OCP                                                                             | 7/01-End        | Dead                                                  |  |  |  |
| OTR                                                                             | 7/12/01         | Rebuilt station (new VCO, seismometer, and batt)      |  |  |  |
| RCM                                                                             | 8/20/01-End     | Seismically dead                                      |  |  |  |
| RCS                                                                             | 5/1/01-9/7/01   | Replaced VCO & Seismometer                            |  |  |  |
| RSU                                                                             | 9/30/00-End     | Dead                                                  |  |  |  |
| SFER                                                                            | 8/9/01          | Permanent Spokane station INSTALLED                   |  |  |  |
| SPUD                                                                            | 9/26/01         | Temporary Spokane station REMOVED                     |  |  |  |
| SSO                                                                             | 9/00-End        | Intermittent, mostly dead                             |  |  |  |
| ГСО                                                                             | 5/1/00??-7/1/01 | Seismometer changed                                   |  |  |  |
| WPW                                                                             | 5/15/01-End     | Dead                                                  |  |  |  |

| TABLE 10 | C - Locations and | <b>Operating Dates</b> of | of Tempo | rary and Permanent Stations in th | ie Spokane Area |
|----------|-------------------|---------------------------|----------|-----------------------------------|-----------------|
| STA      | LAT               | LONG                      | EL       | NAME                              | DATES           |
| SPUD     | 47 39 54.3        | 117 25 35.2               | -        | Spokane County Pub Works, Temp    | 6/26/01-9/25/01 |
| SPK1     | 47 44 02.2        | 117 25 53.2               | -        | Spokane Temp 6047                 | 7/1/01-7/13/01  |
| SPK2     | 47 42 11.2        | 117 19 16.0               | -        | Spokane Temp 6127                 | 7/1/01-7/24/01  |
| SPK3     | 47 38 36.2        | 117 22 55.2               | -        | Spokane Temp 6132                 | 7/1/01-7/24/01  |
| SPK4     | 47 41 28.8        | 117 30 36.0               | -        | Spokane Temp 6085                 | 7/2/01-7/25/01  |
| SPK5     | 47 46 46.3        | 117 27 49.8               | -        | Spokane Temp 6128                 | 7/2/01- 7/19/01 |
| SFER     | 47 37 10.4        | 117 21 55.7               | -        | Ferris High School Permanent      | 8/9/01-         |

## STATIONS USED FOR LOCATION OF EVENTS

Table 2A lists short-period, mostly vertical-component stations used in locating seismic events in Washington and Oregon. The first column in the table gives the 3-letter station designator, followed by a symbol designating the funding agency; stations marked by a percent sign (%) were supported by USGS joint operating agreement 01-HQ-AG-0011. A plus (+) indicates support under Pacific Northwest National Laboratory, Battelle contract 259116-A-B3. Stations designated "#" are USGS-maintained stations recorded at the PNSN. Stations designated by letters are operated by other networks, and telemetered to the PNSN. "M" stations are received from the Montana Bureau of Mines and Geology, "C" stations from the Canadian Pacific Geoscience Center, "U" stations from the US Geological Survey (usually USNSN stations), "N" stations from the USGS Northern California Network, and "H" stations from the Hanford Reservation via the Pacific Northwest National Labs. Other designation indicate support from other sources. Additional columns give station north latitude and west longitude (in degrees, minutes and seconds), station elevation in km, and comments indicating landmarks for which stations were named.

Table 2B lists broad-band stations used in locating seismic events in Washington and Oregon, and Table 2C lists strong-motion stations.

| TABLE 2 | 2A - Short | -period Station | ns operated by | the PNSN | during the third quarter 2001 |
|---------|------------|-----------------|----------------|----------|-------------------------------|
| STA     | F          | LAT             | LONG           | EL       | NAME                          |
| ASR     | %          | 46 09 09.9      | 121 36 01.6    | 1.357    | Mt. Adams - Stagman Ridge     |
| AUG     | %          | 45 44 10.0      | 121 40 50.0    | 0.865    | Augspurger Mtn                |
| BBO     | %          | 42 53 12.6      | 122 40 46.6    | 1.671    | Butler Butte, Oregon          |
| BEN     | Н          | 46 31 12.0      | 119 43 18.0    | 0.335    | PNNL station                  |
| BHW     | %          | 47 50 12.6      | 122 01 55.8    | 0.198    | Bald Hill                     |
| BLN     | %          | 48 00 26.5      | 122 58 18.6    | 0.585    | Blyn Mt.                      |
| BOW     | %          | 46 28 30.0      | 123 13 41.0    | 0.870    | Boistfort Mt.                 |
| BPO     | %          | 44 39 06.9      | 121 41 19.2    | 1.957    | Bald Peter, Oregon            |
| BRO     | %          | 44 16 02.5      | 122 27 07.1    | 0.135    | Big Rock Lookout, Oregon      |
| BRV     | +          | 46 29 07.2      | 119 59 28.2    | 0.920    | Black Rock Valley             |
| BSMT    | М          | 47 51 04.8      | 114 47 13.2    | 1.950    | Bassoo Peak, MT               |
| BUO     | %          | 42 16 42.5      | 122 14 43.1    | 1.797    | Burton Butte, Oregon          |
| BVW     | +          | 46 48 39.5      | 119 52 56.4    | 0.670    | Beverly                       |
| CBS     | +          | 47 48 17.4      | 120 02 30.0    | 1.067    | Chelan Butte, South           |
| CDF     | %          | 46 07 01.4      | 122 02 42.1    | 0.756    | Cedar Flats                   |
| CHMT    | М          | 46 54 51.0      | 113 15 07.0    | -        | Chamberlain Mtn, MT           |
| CMM     | %          | 46 26 07.0      | 122 30 21.0    | 0.620    | Crazy Man Mt.                 |

|             |                                                                                                       |                          | THE PLANE                  |                 |                                                         |
|-------------|-------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|-----------------|---------------------------------------------------------|
|             | مرد المراجع ا |                          | TABLE 2A con               | EL              | NAME                                                    |
| STA         | F                                                                                                     | 48 25 25.3               | LONG<br>122 07 08.4        |                 | Cultus Mtns.                                            |
| CMW<br>CPW  |                                                                                                       | 46 58 25.8               | 123 08 10.8                | 0.792           | Capitol Peak                                            |
| CRF         | +                                                                                                     | 46 49 30.0<br>47 52 14.3 | 119 23 13.2<br>118 12 10.2 | 0.189<br>0.892  | Corfu<br>Davenport                                      |
| DPW<br>DY2  | +++++++++++++++++++++++++++++++++++++++                                                               | 47 59 06.6               | 119 46 16.8                | 0.890           | Dver Hill 2                                             |
| EDM         | %                                                                                                     | 46 11 50.4<br>46 18 20.0 | 122 09 00.0<br>122 20 27.0 | 1.609<br>1.270  | East Dome, Mt. St. Helens<br>Elk Rock                   |
| ELK<br>ELL  | %<br>+                                                                                                | 46 54 34.8               | 120 33 58.8                | 0.789           | Ellensburg                                              |
| EPH         | +                                                                                                     | 47 21 22.8               | 119 35 45.6<br>118 56 15.0 | 0.661<br>0.286  | Ephrata<br>Eltopia (replaces ET2)                       |
| ET3<br>ETW  | +<br>+                                                                                                | 46 34 38.4<br>47 36 15.6 | 120 19 56.4                | 1.477           | Entiat                                                  |
| FHE         | +                                                                                                     | 46 57 06.9<br>46 11 47.0 | 119 29 49.0<br>122 21 01.0 | 0.455<br>1.378  | Frenchman Hills East<br>Flat Top 2                      |
| FL2<br>FMW  | . %                                                                                                   | 46 56 29.6               | 121 40 11.3                | 1.859           | Mt. Fremont                                             |
| GBB         | Н                                                                                                     | 46 36 31.8               | 119 37 40.2<br>119 27 35.4 | 0.185<br>0.330  | PNNL Station<br>Gable Mountain                          |
| GBL<br>GHW  | +<br>%                                                                                                | 46 35 54.0<br>47 02 30.0 | 122 16 21.0                | 0.268           | Garrison Hill                                           |
| GL2         | +                                                                                                     | 45 57 35.0<br>46 33 27.6 | 120 49 22.5<br>121 36 34.3 | 1.000<br>1.305  | New Goldendale<br>Glacier Lake                          |
| GLK<br>GMO  | %<br>%                                                                                                | 44 26 20.8               | 120 57 22.3                | 1.689           | Grizzly Mountain, Oregon                                |
| GMW         | %                                                                                                     | 47 32 52.5               | 122 47 10.8<br>121 47 40.2 | 0.506<br>1.305  | Gold Mt.<br>Grass Mt.                                   |
| GSM<br>GUL  | %<br>%                                                                                                | 47 12 11.4<br>45 55 27.0 | 121 35 44.0                | 1.189           | Guler Mt.                                               |
| H2O         | н                                                                                                     | 46 23 45.0               | 119 25 22.0<br>121 58 16.0 | 1.999           | Water PNNL Station<br>Hamaker Mt., Oregon               |
| HAM<br>HBO  | %<br>%                                                                                                | 42 04 08.3<br>43 50 39.5 | 121 58 16.0                | 1.615           | Huckleberry Mt., Oregon                                 |
| HDW         | %                                                                                                     | 47 38 54.6               | 123 03 15.2<br>121 42 20.5 | 1.006<br>1.887  | Hoodsport<br>Hogback Mtn., Oregon                       |
| HOG         | %<br>%                                                                                                | 42 14 32.7<br>43 31 33.0 | 121 42 20.5                | 1.020           | Harness Mountain, Oregon                                |
| HSO<br>HSR  | %                                                                                                     | 46 10 28.0               | 122 10 46.0                | 1.720           | South Ridge, Mt. St. Helens<br>Haystack Lookout         |
| HTW         | %<br>%                                                                                                | 47 48 14.2<br>44 07 10.9 | 121 46 03.5<br>121 50 53.5 | 0.833<br>2.037  | Husband OR (UO)                                         |
| HUO<br>JBO  | +                                                                                                     | 45 27 41.7               | 119 50 13.3                | 0.645           | Jordan Butte, Oregon                                    |
| JCW         | %<br>%                                                                                                | 48 11 42.7<br>46 08 50.0 | 121 55 31.1<br>122 09 04.4 | 0.792<br>1.049  | Jim Creek<br>June Lake                                  |
| JUN<br>KEB  | Ň                                                                                                     | 42 52 20.0               | 124 20 03.0                | 0.818           | CAL-NET                                                 |
| KMO         | %<br>%                                                                                                | 45 38 07.8 46 27 46.7    | 123 29 22.2<br>122 11 41.3 | 0.975<br>0.610  | Kings Mt., Oregon<br>Kosmos                             |
| KOS<br>KSX  | %<br>N                                                                                                | 41 49 51.0               | 123 52 33.0<br>123 22 35.4 | -               | CAL-NET                                                 |
| KTR         | N<br>%                                                                                                | 41 54 31.2<br>42 16 03.3 | 123 22 35.4<br>122 03 48.7 | 1.378<br>1.774  | CAL-NET<br>Little Aspen Butte, Oregon                   |
| LAB<br>LAM  | N<br>N                                                                                                | 41 36 35.2               | 122 37 32.1                | 1.769           | CAL-NET                                                 |
| LCCM        | M<br>%                                                                                                | 45 50 16.8<br>46 40 14.4 | 111 52 40.8<br>122 42 02.8 | 1.669<br>0.396  | Lewis and Clark Caverns, MT<br>Lucas Creek              |
| LCW<br>LMW  | %<br>%                                                                                                | 46 40 04.8               | 122 17 28.8                | 1.195           | Ladd Mt.                                                |
| LNO         | + %                                                                                                   | 45 52 18.6<br>46 45 00.0 | 118 17 06.6<br>121 48 36.0 | 0.771<br>0.853  | Lincton Mt., Oregon<br>Longmire                         |
| LO2<br>LOC  | %0<br>+                                                                                               | 46 43 01.2               | 119 25 51.0                | 0.210           | Locke Island                                            |
| LVP         | %                                                                                                     | 46 03 59.4<br>48 47 02.4 | 122 24 10.2<br>121 53 58.8 | 1.134<br>1.676  | Lakeview Peak<br>Mt. Baker                              |
| MBW<br>MCMT | %<br>M                                                                                                | 44 49 39.6               | 112 50 55.8                | 2.323           | McKenzie Canyon, MT                                     |
| MCW         | %                                                                                                     | 48 40 46.8<br>46 36 47.4 | 122 49 56.4<br>119 45 39.6 | 0.693<br>0.330  | Mt. Constitution<br>Midway                              |
| MDW<br>MEW  | +<br>%                                                                                                | 47 12 07.0               | 122 38 45.0                | 0.097           | McNeil Island                                           |
| MJ2         | +                                                                                                     | 46 33 27.0<br>46 34 38.4 | 119 21 32.4<br>120 17 53.4 | 0.146<br>0.501  | May Junction 2<br>Moxie City                            |
| MOX<br>MPO  | +<br>%                                                                                                | 40 34 38.4               | 123 33 00.6                | 1.249           | Mary's Peak, Oregon                                     |
| MTM_        | %.                                                                                                    | 46 01 31.8<br>47 07 12.0 | 122 12 42.0<br>122 33 36.0 | 1.121<br>0.100  | Mt. Mitchell<br>Camp Murry ANSS-SMO                     |
| MURR<br>NAC | %<br>+                                                                                                | 46 43 59.4               | 120 49 25.2                | 0.728           | Naches                                                  |
| NCO         | %                                                                                                     | 43 42 14.4               | 121 08 18.0<br>120 20 24.6 | 1.908<br>1.500  | Newberry Crater, Oregon<br>Nelson Butte                 |
| NEL<br>NLO  | +<br>%                                                                                                | 48 04 12.6<br>46 05 21.9 | 123 27 01.8                | 0.826           | Nicolai Mt., Oregon                                     |
| OBC         | %                                                                                                     | 48 02 07.1               | 124 04 39.0<br>123 51 57.0 | 0.938<br>0.383  | Olympics - Bonidu Creek<br>Olympics - Burnt Hill        |
| OBH<br>OCP  | %<br>%                                                                                                | 47 19 34.5<br>48 17 53.5 | 124 37 30.0                | 0.487           | Olympics - Cheeka Peak                                  |
| OD2         | +                                                                                                     | 47 23 15.6               | 118 42 34.8                | 0.553<br>0.152  | Odessa site 2<br>Olympics - Forest Resource Cen         |
| OFR<br>OHW  | %<br>%                                                                                                | 47 56 00.0<br>48 19 24.0 | 124 23 41.0<br>122 31 54.6 | 0.054           | Oák Harbor                                              |
| ON2         | %                                                                                                     | 48 19 24.0<br>46 52 50.8 | 122 31 54.6<br>123 46 51.8 | 0.257           | Olympics - North River                                  |
| OOW<br>OSD  | %<br>%                                                                                                | 47 44 03.6<br>47 48 59.2 | 124 11 10.2<br>123 42 13.7 | 0.561<br>2.008  | Octopus West<br>Olympics - Snow Dome                    |
| OSR         | %                                                                                                     | 47 30 20.3               | 123 42 13.7<br>123 57 42.0 | 0.815           | Olympics Salmon Ridge                                   |
| OT3         | +<br>%                                                                                                | 46 40 08.4<br>48 05 00.0 | 119 13 58.8<br>124 20 39.0 | -0.322<br>0.712 | New Othello (replaces OT2 8/26<br>Olympics - Tyee Ridge |
| OTR<br>PAT  | +                                                                                                     | 45 52 55.2               | 119 45 08.4                | 0.262           | Paterson                                                |
| PCMD        | %                                                                                                     | 46 53 20.9<br>45 27 42.6 | 122 18 00.9<br>122 27 11.5 | 0.239<br>0.253  | PC Mountain Detachment SMUT-SM<br>Gresham, Oregon       |
| PGO<br>PGW  | %<br>%                                                                                                | 47 49 18.8               | 122 35 57.7                | 0.122           | Port Gamble                                             |
| PRO         | +                                                                                                     | 46 12 45.6               | 119 41 08.4<br>121 43 54.4 | 0.553<br>3.085  | Prosser<br>Mt. Rainier, Camp Muir                       |
| RCM<br>RCS  | %<br>%                                                                                                | 46 50 08.9<br>46 52 15.6 | 121 43 54.4                | 2.877           | Mt. Rainier, Camp Schurman                              |
|             | 10                                                                                                    |                          |                            |                 |                                                         |

- 7 -

.

|            |                                         |                          | TABLE 2A co                | ntinued        |                                                 |
|------------|-----------------------------------------|--------------------------|----------------------------|----------------|-------------------------------------------------|
| STA        | F                                       | LAT                      | LONG                       | EL             | NAME                                            |
| RED        | Н                                       | 46 17 51.0               | 119 26 15.6                | 0.330          | Red Mountain PNNL Station                       |
| RER        | %                                       | 46 49 09.2               | 121 50 27.3                | 1.756          | Mt. Rainier, Emerald Ridge                      |
| RMW        | %<br>%                                  | 47 27 35.0               | 121 48 19.2                | 1.024          | Rattlesnake Mt. (West) .                        |
| RNO        | %                                       | 43 54 58.9               | 123 43 25.5                | 0.850          | Roman Nose, Oregon                              |
| RPW        | %                                       | 48 26 54.0               | 121 30 49.0                | 0.850          | Rockport                                        |
| RRHS       | %                                       | 46 47 58.6               | 123 02 25.4                | 0.047          | Rochester HS ANSS-SMO                           |
| RSU        | %                                       | 46 51 12.0               | 121 45 47.0                | 4.440          | Rainier summit                                  |
| RSW        | +                                       | 46 23 40.2               | 119 35 28.8                | 1.045          | Rattlesnake Mt. (East)                          |
| RVC        | %                                       | 46 56 34.5               | 121 58 17.3                | 1.000          | Mt. Rainier - Voight Creek                      |
| RVN        | %                                       | 47 01 38.6               | 121 20 11.9                | 1.885          | Raven Roost (former NEHRP temp                  |
| RVW        | %                                       | 46 08 53.2               | 122 44 32.1<br>119 24 01.8 | 0.460<br>0.701 | Rose Valley<br>St. Andrews                      |
| SAW        | +                                       | 47 42 06.0<br>48 46 05.9 | 122 24 54.2                | 0.119          | Silver Beach ES SMO                             |
| BES        | %<br>%                                  | 47 39 15.8               | 122 18 29.3                | 0.030          | UW, Seattle (Wood Anderson BB                   |
| SEA<br>SEP | #                                       | 46 12 00.7               | 122 11 28.1                | 2.116          | September lobe, Mt. St. Helens                  |
| SFER       | %                                       | 47 37 10.4               | 117 21 55.7                | 2.110          | Spokane Schools, Ferris High School             |
| HW         | %                                       | 46 11 37.1               | 122 14 06.5                | 1.425          | Mt. St. Helens                                  |
| LF         | %                                       | 47 45 32.0               | 120 31 40.0                | 1.750          | Sugar Loaf                                      |
| МW         | %                                       | 47 19 10.7               | 123 20 35.4                | 0.877          | South Mtn.                                      |
| NI         | Ĥ                                       | 46 27 80.0               | 119 39 50.0                | -              | PNNL station                                    |
| os         | %                                       | 46 14 38.5               | 122 08 12.0                | 1.270          | Source of Smith Creek                           |
| SÕ         | %                                       | 44 51 21.6               | 122 08 12.0<br>122 27 37.8 | 1.242          | Sweet Springs, Oregon                           |
| TD         | %                                       | 46 14 16.0               | 122 13 21.9                | 1.268          | Studebaker Ridge                                |
| TW         | %                                       | 48 09 03.1               | 123 40 11.1                | 0.308          | Striped Peak                                    |
| ъМ         | + .                                     | 47 10 12.0               | 120 35 52.8                | 1.006          | Table Mt.                                       |
| со         | %                                       | 44 06 27.6               | 121 36 02.1                | 1.975          | Three Creek Meadows, Oregon.                    |
| ЪH         | %                                       | 45 17 23.4               | 121 47 25.2<br>122 12 57.0 | 1.541          | Tom, Dick, Harry Mt., Oregon                    |
| DL         | %                                       | 46 21 03.0               | 122 12 57.0                | 1.400          | Tradedollar Lake                                |
| RW         | +                                       | 46 17 32.0               | 120 32 31.0                | 0.723          | Toppenish Ridge                                 |
| WW.        | + %                                     | 47 08 17.4               | 120 52 06.0<br>123 00 43.0 | 1.027          | Teanaway                                        |
| JWFH       | %<br>%                                  | 48 32 46.0<br>45 03 37.2 | 123 00 43.0                | 0.010<br>1.544 | UW Friday Harbor SMUT-SMO                       |
| 'BE<br>'CR | 70<br>0%                                | 44 58 58.2               | 120 59 17.4                | 1.015          | Beaver Butte, Oregon<br>Criterion Ridge, Oregon |
| DB         | %<br>C                                  | 49 01 34.0               | 120 39 17.4                | 0.404          | Canada                                          |
| FP         | %<br>C<br>%                             | 45 19 05.0               | 121 27 54.3                | 1.716          | Flag Point, Oregon                              |
| G2         | %                                       | 45 09 20.0               | 122 16 15.0                | 0.823          | Goat Mt., Oregon                                |
| ĞĒ         |                                         | 45 30 56.4               | 120 46 39.0                | 0.729          | Gordon Butte, Oregon                            |
| ĞŽ         | +<br>C<br>%                             | 48 24 50.0               | 120 46 39.0<br>123 19 27.8 | 0.067          | Canada                                          |
| IP         | %                                       | 44 30 29.4               | 120 37 07.8                | 1.731          | Ingram Pt., Oregon                              |
| LL         | %                                       | 45 27 48.0               | 121 40 45.0                | 1.195          | Laurance Lk., Oregon                            |
| LM         | %                                       | 45 32 18.6               | 122 02 21.0                | 1.150          | Little Larch, Oregon                            |
| SP         | %                                       | 42 20 30.0               | 121 57 00.0                | 1.539          | Spence Mtn, Oregon                              |
| <u>T2</u>  | +                                       | 46 58 02.4               | 119 59 57.0                | 1.270          | Vantage2                                        |
| TH         | %                                       | 45 10 52.2               | 120 33 40.8                | 0.773          | The Trough, Oregon                              |
| /A2        | +                                       | 46 45 19.2               | 119 33 56.4                | 0.244          | Wahluke Slope                                   |
| AT         | +                                       | 47 41 55.2               | 119 57 14.4                | 0.821          | Waterville<br>Willow Paul                       |
| 'IB<br>'IW | %                                       | 46 20 34.8<br>46 25 45.6 | 123 52 30.6<br>119 17 15.6 | 0.503<br>0.128 | Willapa Bay<br>Wooded Island                    |
| 'PO        | *<br>%                                  | 46 25 45.6<br>45 34 24.0 | 122 47 22.4                | 0.128          | Wooded Island<br>West Portland, Oregon          |
| 'PW        | %<br>%                                  | 46 41 55.7               | 121 32 10.1                | 1.280          | West Portland, Oregon<br>White Pass             |
| 'RD        | 70<br>+                                 | 46 58 12.0               | 119 08 41.4                | 0.375          | Warden                                          |
| 'RW        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 47 51 26.0               | 120 52 52.0                | 1.189          | Wenatchee Ridge                                 |
| A2         | +                                       | 46 31 36.0               | 120 31 48.0                | 0.652          | Yakima                                          |
| EĹ         | #                                       | 46 12 35.0               | 122 11 16.0                | 1.750          | Yellow Rock, Mt. St. Helens                     |
| ΡŤ         | +                                       | 46 02 55.8               | 118 57 44.0                | 0.325          | Yellepit                                        |

 TABLE 2B

 Broad-band three-component stations operating at the end of the third quarter 2001. Symbols are as in Table 2A.

| STA  | F                | LAT        | LONG        | EL    | NAME                                              |
|------|------------------|------------|-------------|-------|---------------------------------------------------|
| BRKS | %                | 47 45 19.1 | 122 17 17.9 | 0.020 | Brookside Sch. (vertical BB only) ANSS-SMO        |
| COR  | U                | 44 35 08.5 | 123 18 11.5 | 0.121 | Corvallis, Oregon (IRIS station, Operated by OSU) |
| DBO  | %                | 43 07 09.0 | 123 14 34.0 | 0.984 | Dodson Butte, Oregon (CREST - operated by UO)     |
| ELW  | %                | 47 29 38.8 | 121 52 21.6 | 0.267 | Echo Lake, WA (operated by UW)                    |
| ERW  | %                | 48 27 14.4 | 122 37 30.2 | 0.389 | Mt. Erie, WA (operated by UW)                     |
| EUO  | %                | 44 01 45.7 | 123 04 08.2 | 0.160 | Eugene, OR U0 CREST BB SMO                        |
| GNW  | %<br>%<br>%<br>% | 47 33 51.8 | 122 49 31.0 | 0.165 | Green Mountain, WA (CREST - operated by UW)       |
| HAWA | U                | 46 23 32.3 | 119 31 57.2 | 0.367 | Hanford Nike (USGS-USNSN)                         |
| HLID | U                | 43 33 45.0 | 114 24 49.3 | 1.772 | Hailey, ID (USGS-USNSN)                           |
| LON  | %<br>%<br>U      | 46 45 00.0 | 121 48 36.0 | 0.853 | Longmire (CREST - operated by UW)                 |
| LTY  | %                | 47 15 21.2 | 120 39 53.3 | 0.970 | Liberty, WA (operated by UW)                      |
| NEW  | U                | 48 15 50.0 | 117 07 13.0 | 0.760 | Newport Observatory (USGS-USNSN)                  |
| OCWA | U                | 47 44 56.0 | 124 10 41.2 | 0.671 | Octopus Mtn. (USGS-USNSN)                         |
| OPC  | ж<br>%<br>С      | 48 06 01.0 | 123 24 41.8 | 0.090 | Olympic Penn College CREST BB                     |
| PIN  | %                | 43 48 40.0 | 120 52 19.0 | 1.865 | Pine Mt. Oregon (CREST - operated by UO)          |
| PNT  | С                | 49 18 57.6 | 119 36 57.6 | 0.550 | Canada, BB                                        |
| RAI  |                  | 46 02 25.1 | 122 53 06.4 | 1.520 | Trojan Plant, Oregon (OSU)                        |
| RWW  | %                | 46 57 50.1 | 123 32 35.9 | 0.015 | Ranney Well (CREST - operated by UW)              |
| SEA  | %<br>C           | 47 39 15.8 | 122 18 29.3 | 0.030 | UW, Seattle (Wood Anderson BB)                    |
| SNB  | С                | 48 46 33.6 | 123 10 16.3 | 0.408 | Canada                                            |
| SP2  | %                | 47 33 23.3 | 122 14 52.8 | 0.030 | Seward Park, Seattle (operated by UW)             |
| SPUD | %                | 47 39 54.3 | 117 25 35.2 | -     | Spokane County Pub Works, temporary               |
| SQM  | %<br>%<br>%      | 48 04 39.0 | 123 02 44.0 | 0.030 | Sequim (operated by UW, telemetered by Battelle)  |
| TTW  | %                | 47 41 40.7 | 121 41 20.0 | 0.542 | Tolt Reservoir, WA (CREST - operated by UW)       |
| WVOR | <u> </u>         | 42 26 02.0 | 118 38 13.0 | 1.344 | Wildhorse Valley, Oregon (USGS-USNSN)             |

Table 2C, lists strong-motion, three-component stations operating in Washington and Oregon that provide data in real or near-real time to the PNSN. Several of these stations also have broad-band instruments, as noted. The "SENSOR" held designates what type of seismic sensor is used; • A = Terra-Tech SSA-320 SLN triaxial accelerometer/Terra-Tech IDS24 • A20 = Terra-Tech SSA-320 triaxial accelerometer/Terra-Tech IDS20 recording system,

- FBA23 = Kinemetrics FBA23 accelerometers and Reftek recording system,
  EPI = Kinemetrics Episensor accelerometers and Reftek recording system.
  BB = Guralp CMG-40T 3-D broadband velocity sensor.
- BB3 = Guralp CMG3T 3-D broadband velocity sensor.
- BBZ = Broad Band sensor, PMD 2024, vertical component only.
- K2 = Kinemetrics Episensor accelerometers and K2 Recording System
- The "TELEMETRY" field indicates the type of telemetry used to recover the data.
  - D = dial-up,
  - L = continuously telemetered via dedicated lease-line telephone lines,
  - L-PPP = continuously telemetered via dedicated lease-line telephone lines using PPP protocol

• I = continuously telemetered via Internet,

• E = continuously telemetered via Internet from a remote EARTHWORM system

| Strong               | motion                     | three compone                                                                                                             | ant stations or                                                                                                                                                                             | erating a               | TABLE 2C<br>t the end of the third quarter 2001.                 | Symbols are a                     | in Table 24    |
|----------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------|-----------------------------------|----------------|
| STA                  | -monon<br>F                |                                                                                                                           | LONG                                                                                                                                                                                        | EL EL                   | NAME                                                             | SENSORS                           | TELEMETRY      |
|                      |                            |                                                                                                                           |                                                                                                                                                                                             | 0.055                   | Alcott Elementary                                                |                                   |                |
| ALCT<br>ALST<br>ALVY | <i>5</i> %<br>%            | 47 38 48.8<br>46 6 32.3<br>43 59 53.2                                                                                     | 122 2 15.7<br>123 1 58.5<br>123 0 57.0                                                                                                                                                      | 0.198<br>0.155          | Alston                                                           | K2<br>A20<br>K2<br>K2<br>K2<br>K2 | E.M            |
| ALVY                 | %<br>.%                    | 43 59 53.2<br>48 14 10.9                                                                                                  | 122 3 33.0                                                                                                                                                                                  | 0.135                   | Alvey<br>Trafton Elementary                                      | K2<br>K2                          | E,M<br>I       |
| BABE                 | %<br>%<br>%                | 47 36 21.0                                                                                                                | 123 0 57.0<br>122 3 33.0<br>122 32 7.0<br>122 16 12.0                                                                                                                                       | 0.010<br>0.010          | Tration Elementary<br>Blakely Elementary<br>Boeing Plant Everett | K2                                | į              |
| BEVT<br>BRKS         | %<br>%                     | 47 55 12.0<br>47 45 19.1                                                                                                  | 122 16 12.0                                                                                                                                                                                 | 0.170<br>0.020          | Brookside Elementary                                             | K2<br>K2.BBZ                      | 1              |
| CSEN                 | %                          | 47 48 4 5                                                                                                                 | 122 17 17.9<br>122 13 6.5<br>122 41 22.5<br>123 14 34.0<br>122 2 37.7<br>122 58 41.0<br>121 52 17.2<br>122 37 30.2<br>123 4 8 2                                                             | 0.055                   | Crystal Springs Elementary                                       | K2                                | į              |
| CSO<br>DBO           | #<br>%                     | 45 31 1.0<br>43 7 9.0<br>47 44 27.2                                                                                       | 122 41 22.5                                                                                                                                                                                 | 0.036<br>0.984          | Canyon<br>Dodson Butte (CREST)                                   | FBA23<br>EPI,BB3                  | D<br>E,L-PPP   |
| EARN                 | %                          | 47 44 27.2                                                                                                                | 122 2 37.7                                                                                                                                                                                  | 0.159                   | East Ridge Elementary<br>Evergreen State College<br>Echo Lake    | K2<br>K2                          | I              |
| EGRN<br>ELW          | %<br>%                     | 47 4 24.0                                                                                                                 | 122 58 41.0                                                                                                                                                                                 | 0.010                   | Evergreen State College                                          | K2<br>A,BB                        | None<br>D M I  |
| ERW                  | <b>%</b>                   | 47 29 39.4<br>48 27 14.4                                                                                                  | 122 37 30.2                                                                                                                                                                                 | 0.267<br>0.389          | Mount Ene                                                        | A,BB                              | D,M,L<br>D,L,M |
| EUO                  | %<br>%<br>%                | 44 1 45.7<br>48 0 27.0                                                                                                    | 122 37 30.2<br>123 4 8.2<br>122 12 15.3<br>122 9 12.2<br>122 13 55.9<br>122 49 31.0<br>122 39 24.0<br>122 17 52.4<br>122 23 1.0<br>122 19 56.0<br>122 53 42.4<br>122 37 52.4<br>122 37 52.4 | 0.160<br>0.000          | Eugene (CREST)<br>Everett Community College                      | EPI,BB3<br>K2                     | E.L-PPP        |
| EVCC<br>EVGW         | ~~<br>%                    | 47 51 15.8                                                                                                                | 122 9 12.2                                                                                                                                                                                  | 0.010                   | Gateway Middle School                                            | K2                                | None<br>I      |
| FINN                 | %                          | 47 43 10.2                                                                                                                | 122 13 55.9                                                                                                                                                                                 | 0.121                   | Finn Hill Junior High                                            | K2                                | I              |
| GNW<br>HAO           | %<br>#                     | 47 33 31.8                                                                                                                | 122 49 31.0                                                                                                                                                                                 | 0.165<br>0.018          | Green Mountain (CREST)<br>Harrison                               | EPI,BB3<br>FBA23                  | L-PPP<br>D     |
| HICC                 | "%<br>%                    | 47 43 10.2<br>47 33 51.8<br>45 30 33.1<br>47 23 24.4<br>47 33 55.4<br>47 35 42.7<br>45 33 0.8<br>47 34 37.9<br>47 34 37.9 | 122 17 52.4                                                                                                                                                                                 | 0.115                   | Highline Community College                                       | K2<br>K2<br>K2<br>K2<br>A20       | Ī              |
| HOLY<br>KDK          | %<br>%                     | 47 33 55.4                                                                                                                | 122 23 1.0                                                                                                                                                                                  | 0.106                   | Holy Rosary School<br>King Dome                                  | K2<br>K2                          | l<br>None      |
| KEEL                 | %<br>%<br>%                | 45 33 0.8                                                                                                                 | 122 53 42.4                                                                                                                                                                                 | 0.004<br>0.067<br>0.010 | Keeler                                                           | A20                               | D,E,M          |
| KICC<br>KIMB         | %<br>%                     | 47 34 37.9<br>47 34 29.3                                                                                                  | 122 37 52.4                                                                                                                                                                                 | 0.010<br>0.069          | Kitsap County Central Communications<br>Kimball Elementary       | K2<br>K2                          | None           |
| KIMR                 | $c_{L}$                    | 47 30 11.0                                                                                                                | 122 46 2.0                                                                                                                                                                                  | 0.123                   | Moderate Risk Waste Collection Facility                          | K2<br>K2                          | i              |
| KINR                 | 70<br>%<br>%<br>%          | 47 45 6.0<br>47 40 30.0                                                                                                   | 122 38 35.0                                                                                                                                                                                 | 0.123<br>0.010<br>0.076 | North Road Shed                                                  | K2<br>K2<br>K2<br>K2<br>K2<br>K2  | ļ              |
| KITP<br>KNJH         | %<br>%                     | 47 23 5.0                                                                                                                 | 122 13 42.0                                                                                                                                                                                 | 0.010                   | Wastewater Treatment Plant<br>Kent Junior High                   | K2<br>K2                          | I<br>None      |
| LANE                 | %                          | 44 3 6.5                                                                                                                  | 122 37 32.4<br>122 18 10.1<br>122 46 2.0<br>122 38 35.0<br>122 37 47.0<br>122 13 42.0<br>123 13 54.8<br>122 23 21.9<br>122 6 56.2                                                           | 0.120                   | Lane                                                             | K2                                | E,M            |
| LAWT<br>LEOT         | %<br>%                     | 47 39 23.4<br>47 46 4.4                                                                                                   | 122 23 21.9                                                                                                                                                                                 | 0.050<br>0.115          | Lawton Elementary<br>Leota Junior High                           | A20<br>K2                         | I              |
| LON                  | %                          | 46 45 0.0                                                                                                                 |                                                                                                                                                                                             | 0.853                   | Longmire Springs (CREST)                                         | EPI,BB3                           | L-PPP          |
| LTY<br>MARY          | %<br>ez                    | 47 15 21.2                                                                                                                | 120 39 53.4                                                                                                                                                                                 | 0.970<br>0.011          | Liberty Heights Mine (CREST)<br>Marymoor Park                    | BB3                               | I              |
| MBKE                 | <b>% %</b> % % % %         | 47 15 21.2<br>47 39 45.7<br>48 55 2.0<br>47 53 54.7                                                                       | 122 7 11.6<br>122 8 29.0<br>121 53 20.2                                                                                                                                                     | 1.010                   | Kendall Elementary                                               | K2<br>K2                          | i              |
| MBPA<br>MPL          | %<br>%                     | 47 53 54.7                                                                                                                | 121 53 20.2                                                                                                                                                                                 | 0.186<br>0.122          | Monroe<br>Maple Valley                                           | A20                               | D.M.L          |
| MURR                 | %<br>%                     | 47 28 7.0<br>47 7 12.0                                                                                                    | 122 11 4.5<br>122 33 36.0<br>122 15 21.2<br>123 9 29.0                                                                                                                                      | 0.100                   | Maple Valley<br>Camp Murray<br>NOAA Sand Point                   | A<br>K2                           | D,M,L<br>None  |
| NOWS                 | %<br>%                     | 47 41 12.0                                                                                                                | 122 15 21.2                                                                                                                                                                                 | 0.002                   | NOAA Sand Point                                                  | A20                               | 1              |
| OHC<br>OPC           | %<br>%                     | 47 20 2.0<br>48 6 1.0                                                                                                     | 123 9 29.0                                                                                                                                                                                  | 0.010<br>0.090          | Hood Canal Junior High<br>Peninsula College (CREST)              | K2<br>EPI.BB                      | l              |
| PAYL                 | %                          | 47 11 34 0                                                                                                                | 122 18 46 0                                                                                                                                                                                 | 0.010                   | Aylen Junior High                                                | K2<br>K2<br>K2                    | i              |
| PCEP<br>PCFR         | %<br>%                     | 47 6 41.8<br>46 59 23.3<br>46 53 20.9                                                                                     | 122 17 24.0<br>122 26 27.4<br>122 18 0.9<br>120 52 19.0                                                                                                                                     | 0.160                   | Púyallup East Sheriff Precinct<br>Roy Training Center            | K2                                | 1              |
| PCMD                 | %%%%%%%<br>%%%%%<br>#      | 46 53 20.9                                                                                                                | 122 18 0.9                                                                                                                                                                                  | 0.137<br>0.239          | Mountain Detachment                                              | K2<br>K2                          | I              |
| PIN<br>PNLK          | %                          | 43 48 40.0<br>47 34 54.5                                                                                                  | 120 52 19.0<br>122 2 1.0                                                                                                                                                                    | 1.865<br>0.128          | Pine Mtn. (CREST)<br>Pine Lake Middle School                     | EPI,BB3                           | E.L-PPP        |
| QAW                  | %<br>%                     | 47 37 54.3                                                                                                                | 122 21 15.5                                                                                                                                                                                 | 0.128                   | Queen Anne                                                       | K2<br>A20                         | 1              |
| RAW                  | %                          | 47 20 14.0<br>47 26 6.7                                                                                                   | 122 21 15.5<br>121 55 53.2<br>122 11 10.0                                                                                                                                                   | 0.208                   | Raver                                                            | A20                               | M,L            |
| RBEN<br>RBO          | %o<br>#                    | 4/26 6./<br>45 32 27.0                                                                                                    |                                                                                                                                                                                             | 0.152<br>0.158          | Benson Hill Elementary<br>Rocky Butte                            | K2<br>FBA23                       | I<br>D         |
| RHAZ                 | %                          | 47 32 24.7                                                                                                                | 122 11 1.3                                                                                                                                                                                  | 0.108                   | Hazelwood Elementary                                             | A20                               | Ĭ              |
| ROSS<br>RRHS         | ж<br>Ж<br>Ж<br>Ж<br>Ж<br>Ж | 45 39 43.0                                                                                                                | 122 33 51.5<br>122 11 1.3<br>122 39 25.0<br>123 2 25.4<br>123 32 31.7<br>122 24 54.2<br>122 18 29.3<br>117 21 55.7<br>122 15 53.4                                                           | 0.061<br>0.047          | Ross<br>Rochester High School                                    | A20                               | E              |
| RWW                  | ж<br>Ж                     | 46 47 58.6<br>46 57 53.7<br>48 46 5.9                                                                                     | 123 32 31.7                                                                                                                                                                                 | 0.015                   | Rochester High School<br>Ranney Well (CREST)                     | K2<br>EPI,BB3                     | None<br>L-PPP  |
| SBES                 | %                          | 48 46 5.9<br>47 39 15.8                                                                                                   | 122 24 54.2                                                                                                                                                                                 | 0.119                   | Silver Beach Elementary School<br>University of Washington       | K2                                | Ī              |
| SEA<br>SFER          | 50<br>56                   | 47 37 10.4                                                                                                                | 117 21 55.7                                                                                                                                                                                 | 0.030<br>0.000          | Ferris High School                                               | A,BB<br>K2                        | L              |
| SMNR                 | %                          | 47 12 16.6                                                                                                                | 122 12 53.4<br>122 14 52.8                                                                                                                                                                  | 0.010                   | Ferris High School<br>Summer High School<br>Seward Park          | K2                                | i              |
| SP2<br>SPUD          | %<br>%<br>%                | 47 33 23.3<br>47 39 53.3                                                                                                  | 122 14 52.8                                                                                                                                                                                 | 0.030<br>0.573          | Seward Park<br>Spokane Public Works (CREST)                      | A,BB<br>EPI,BB                    | L              |
| SOM                  | %                          | 48 4 39.0                                                                                                                 | 117 25 35.2<br>123 2 44.0<br>122 37 54.8                                                                                                                                                    | 0.030                   | Sequim Battelle Properties (CREST)                               | EPI,BB                            | L,R            |
| SVOH                 | %<br>%                     | 48 17 21.8                                                                                                                | 122 37 54.8                                                                                                                                                                                 | 0.010                   | Skagit Valley College Oak Harbor<br>South Whidbey Primary School | K2<br>K2                          | ļ              |
| SWID<br>TBPA         | %                          | 48 0 31.0<br>47 15 29.0                                                                                                   | 122 24 42.0<br>122 22 1.0                                                                                                                                                                   | 0.010<br>0.002          | South Whidbey Primary School Tacoma                              | K2<br>A20                         | I<br>M,L,D     |
| TKCO                 | %                          | 47 15 29.0<br>47 32 12.7                                                                                                  | 177 18 15                                                                                                                                                                                   | 0.005                   | King County Airport                                              | A20                               | 1              |
| TTW<br>UPS           | %<br>%<br>%                | 47 41 40.7                                                                                                                | 121 41 20.0                                                                                                                                                                                 | 0.542<br>0.113          | Tolt Reservoir (CREST)<br>University of Puget Sound              | EPI,BB3                           | I              |
| UWFH                 | %                          | 47 41 40.7<br>47 15 50.2<br>48 32 46.0<br>47 25 25.1                                                                      | 123 0 43.0                                                                                                                                                                                  | 0.010                   | Friday Harbor Laboratories                                       | K2<br>K2                          | 1              |
| VVHS<br>WISC         | %<br>%                     | 47 25 25.1<br>47 36 32.0                                                                                                  | 121 41 20.0<br>122 29 1.1<br>123 0 43.0<br>122 27 13.1<br>122 10 27.8                                                                                                                       | 0.095<br>0.056          | Vashon High School                                               | K2                                | None           |
|                      | <u></u>                    |                                                                                                                           | 122 10 27.0                                                                                                                                                                                 | 0.0.0                   | Wilburton Instructional Services Center                          | <u>K2</u>                         | 1              |

# **OUTREACH ACTIVITIES**

The PNSN Seismology Lab staff provides an educational outreach program to better inform the public, educators, businesses, policy makers, and the emergency management community about seismicity and natural hazards. Our outreach includes lab tours, lectures, classes and workshops, press conferences, TV and radio news programs and talk shows, field trips, and participation in regional earthquake planning efforts. We provide basic information through information sheets, an audio library, and the Internet on the World-Wide-Web (WWW):

#### http://www.ess.washington.edu/SEIS/PNSN

## **Special Outreach Events**

- The Nisqually Earthquake Clearinghouse continued to collect and organize data under the direction of Bill Steele and Tony Qamar. Some data sets currently available through the University of Washington Spatial Data Archive at: http://maximus.ce.washington.edu/~nisqually/index.html. More data will be added as they become available.
- Tony Qamar, Washington State Seismologist, has been appointed to the newly reconstituted Seismic Safety Committee of the Washington State Emergency Management Council to review progress on objectives set out in the 1991 Seismic Safety Advisory Committee study titled "A Policy Plan for Improving Seismic Safety in Washington State". A report will be made in early 2002 to the Governor and the legislature with new policy and funding priority recommendations. Dr. Qamar has been appointed chairman of the Information and Technology Subcommittee, one of four working groups. Dr. Craig Weaver (USGS - Seattle field Office ) will head the subcommittee concerned with transportation, pipeline, and power "lifeline" safety recommendations.
- Amy Lindemuth has been developing additional PNSN web-site resources for K-12 educators. A committee of 4 local teachers (2 high school, 2 middle school) has been recruited to review our offerings and provide feedback. Schools throughout the Puget Sound area are participating in the ANSS urban strong motion seismometer network by hosting instruments and providing telemetry.
- Ruth Ludwin and Bill Steele continued to work with exhibits coordinators from the Burke Museum developing content for a touring exhibit that will be shown at locations throughout the region in 2002.
- July 11th- Steve Malone presented a review talk on magma recharge at quiescent volcanos to the International School of Earth Sciences, Erice, Italy
- July 26th- The PNSN hosted the CREW Executive Board annual meeting in the Peterson Room of the Allen Library.
- August 7th through 9th- The International Tsunami Society Meeting was held at the University of Washington. Bill Steele served on the NOAA/PMEL-led organizing committee, and PNSN staff assisted USGS Geologist Brian Atwater with a field trip to the Washington coast to see paleo-tsunami deposits. PNSN staff also participated in meetings with local emergency responders and in a community lecture and poster program in Ocean Shores, WA following the field trip.
- Steve Malone presented invited talks at Mount Rainier National Park (Aug. 8th on earthquakes and volcanic hazards), and at Mount St. Helens National Monument (Aug 11th - on seismic evidence for magma recharge at Mount St. Helens).
- August 28th- Bill Steele, Craig Weaver and Steve Malone gave an overview of PNSN and USGS hazards research and seismic monitoring activities in the Pacific Northwest to a group of Congressional and Interior Dept. staff. The meeting was followed by a field trip to Waterman Point in Kitsap County, where USGS scientists gave a tour of trenches cutting aross a fault scarp.
- August 30th- Jeff Johnson, a recent Ph.D., gave a talk on PNW earthquake and volcano hazards to the West Seattle Lions Club.
- Sept. 4-6 Steve Malone attended the National Implementation Committee meeting of the ANSS as the PNW regional coordinator and as a member of the Technical Integration Committee.
- Sept. 14 Steve Malone presented an invited talk on "Our developing understanding of earthquakes and their effects on the PNW" to the Technology Alliance at the Rainier Club in Seattle.
- Sept 14th- Bill Steele provided a keynote address for the Harkins Surgical Society annual dinner.
- Sept. 25 and 26th- Ruth Ludwin accompanied George Crawford of WA State EMD, Tim Walsh of Washington State Dept. of Natural Resources and Craig Weaver of the USGS on a visit to Spokane, where they met with community members and county officials to discuss Spokane-area seismic hazards, earthquake monitoring, and preparedness.

#### Press Interviews, Lab Tours, and Workshops

This quarter PNSN staff provided five tours of the Seismology Lab or classes to K-12 students, including groups from innercity schools, private schools, and home schools. Two groups of Middle School science teachers and six groups of college students toured the Seismology Lab including two from community colleges, three UW Classes, and a group of geology students from another Puget Sound university. Additional tours were provided for US Congressional science committee staffers and UW employees. Altogether, tours and/or classes were provided for 190 individuals.

## Telephone, Mail, and On-line outreach

The PNSN audio library system received about 700 calls this quarter. Our audio library provides several recordings. The most popular is a frequently updated message on current seismic activity. In addition we have a tape describing the seismic hazards in Washington and Oregon, and another on earthquake prediction. Callers often request our one-page information and resource sheet on seismic hazards in Washington and Oregon. Thousands of these have been mailed out or distributed, and we encourage others to reproduce and further distribute this sheet. Our information sheet discussing earthquake prediction is also frequently requested. Callers to the audio library can also choose to be transferred to the Seismology Lab, where additional information is available. This quarter we responded in person to: ~30 calls from emergency managers and government, ~50 calls from the media, ~35 calls from educators ~30 calls from the business community, and about 120 calls from the general public.

#### Internet outreach

The PNSN web-site offers many web pages, including maps and lists of the most recent PNW earthquakes, general information on earthquakes and PNW earthquake hazards, information on past damaging PNW earthquakes, and catalogs of earthquake summary cards. Web-pages on seismicity of Cascade Volcanos, and Quarterly summaries of seismicity are also included. The PNSN recent earthquake list is available through the World-Wide-Web (WWW) at:

## http://www.ess.washington.edu/SEIS/PNSN

"Webicorder" pages allow Web visitors (and us) to view continuous data from PNSN seismographic stations at:

#### http://www.ess.washington.edu/SEIS/PNSN/WEBICORDER/

ShakeMap generates maps showing instrumentally measured shaking effects. Table 3A indicates which events this quarter generated ShakeMaps.

#### Shake Maps: http://www.ess.washington.edu/shake/index.html

Table 3A also indicates the felt events this quarter that generated Community Internet Intensity Maps (CIIM). CIIM maps are made using Internet reports. For a well-felt event hundreds (or thousands) of people fill out an on-line form describing their experiences during the earthquake. These "felt" reports are converted into numeric intensity values, and the CIIM map shows the average intensity by zip code.

# CIIM Maps: http://pasadena.wr.usgs.gov/shake/pnw/

In addition to the PNSN web site, the UW Dept. of Earth and Space Sciences and the PNSN host several other earthquake-related web sites:

- Volcano Systems Center: http://www.vsc.washington.edu is a cooperative effort of the UW and the USGS that links volcano-related activities of the UW Dept. of Earth and Space Sciences and Oceanography departments with related USGS activities.
- Seismosurfing: http://www.ess.washington.edu/seismosurfing.html is a comprehensive listing of sites worldwide that offer substantive seismology data and information. This page is mirrored at two sites in Europe.
- The Council of the National Seismic Systems (CNSS): http://www.cnss.org features composite listings and maps of recent U.S. earthquakes, and documentation of the EARTHWORM system.
- "Tsunami!" : http://www.ess.washington.edu/tsunami offers many pages, including an excellent discussion on the physics of tsunamis, and short movie clips. It was developed by Benjamin Cook under the direction of Dr. Catherine Petroff (UW Civil Engineering).

• The UW Dept. of Earth and Space Sciences Global Positioning System (GPS):

#### http://www.ess.washington.edu/GPS/gps.html

site provides information on geodetic studies of crustal deformation in Washington and Oregon.

## EARTHQUAKE DATA - 2001-C

There were 2,029 events digitally recorded and processed at the University of Washington between July 1 and September 30, 2001. Locations in Washington, Oregon, or southernmost British Columbia were determined for 800 of these events; 665 were classified as earthquakes and 135 as known or suspected blasts. The remaining 1,229 processed events include teleseisms (192 events), regional events outside the PNSN (181), and unlocated events within the PNSN. Unlocated events within the PNSN include very small earthquakes and some known blasts. Frequent mining blasts occur near Centralia, Washington and we routinely locate some of them.

Table 3A is a listing of all earthquakes reported to have been felt during this quarter. Table 3B is a listing of earthquakes magnitude 2.5 or greater with reasonably constrained focal mechanisms from P-wave first motions. Table 4, located at the end of this report, is this quarter's catalog of earthquakes M 2.0 or greater, located within the network - between 42-49.5 degrees north latitude and 117-125.3 degrees west longitude.

Fig. 2 shows earthquakes with magnitude greater than or equal to 0.0 ( $M_c \ge 0$ ).

Fig. 3 shows blasts and probable blasts ( $M_c \ge 0$ ).

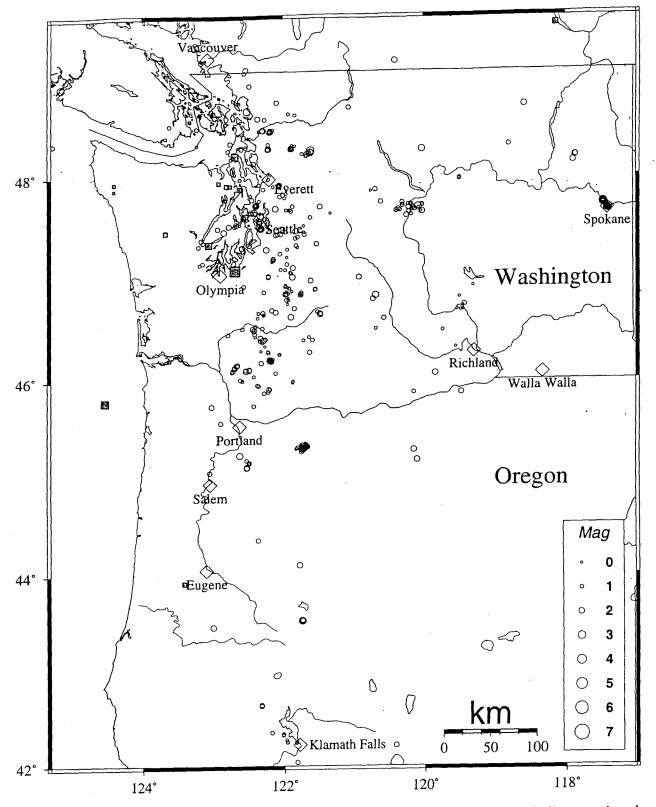
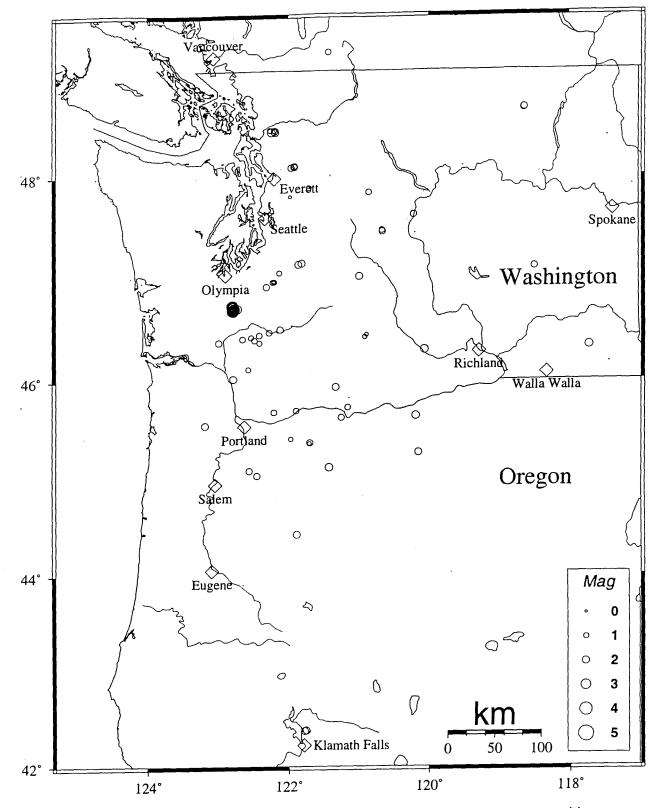
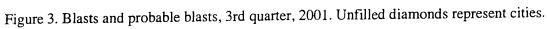
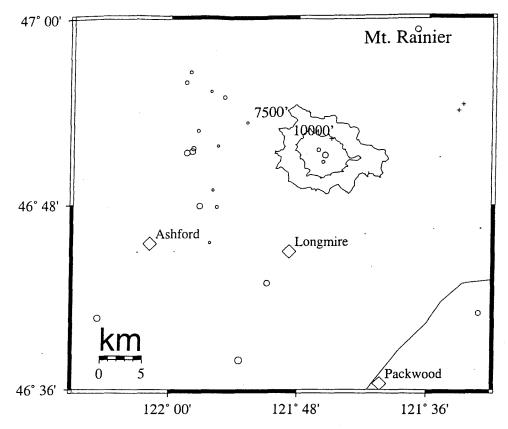
Fig. 4 shows earthquakes located near Mt. Rainier ( $M_c \ge 0$ ).

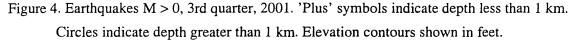
Fig. 5 shows earthquakes located at Mt. St. Helens  $(M_c \ge 0)$ .

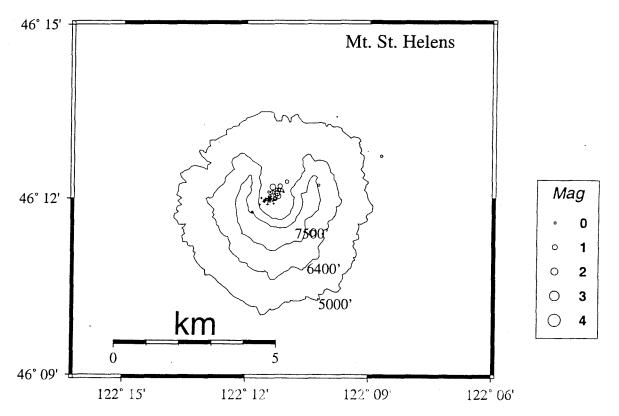
Fig. 6 shows reasonably well-constrained focal mechanisms for earthquakes with M 2.5 this quarter. Fig. 7 shows earthquakes near Spokane, Jan.-Sept. 2001.

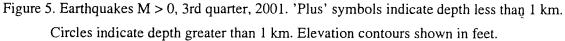
| TABLE 3A - Felt Earthquakes during the 3rd Quarter of 2001 |        |        |       |     |                              |      |          |  |  |
|------------------------------------------------------------|--------|--------|-------|-----|------------------------------|------|----------|--|--|
| DATE-(UTC)-TIME                                            | LAT(N) | LON(W) | DEPTH | MAG | COMMENTS                     | CIIM | ShakeMap |  |  |
| 01/07/01 05:44:12                                          | 47.67  | 117.41 | 0.0   | 2.8 | 0.4 km W of Spokane, WA      |      |          |  |  |
| 01/07/01 05:45:43                                          | 47.66  | 117.40 | 0.5   | 2.8 | 0.3 km SSE of Spokane, WA    |      |          |  |  |
| 01/07/01 06:07:13                                          | 47.67  | 117.40 | 0.0   | 2.3 | 0.5 km NW of Spokane, WA     |      |          |  |  |
| 01/07/02 17:48:28                                          | 47.67  | 117.42 | 0.5   | 0.6 | 1.5 km WNW of Spokane, WA    |      |          |  |  |
| 01/07/03 21:20:27                                          | 47.67  | 117.41 | 0.0   | 2.2 | 0.9 km NW of Spokane, WA     |      |          |  |  |
| 01/07/08 11:16:32                                          | 47.68  | 117.41 | 0.5   | 1.5 | 1.7 km NW of Spokane, WA     |      |          |  |  |
| 01/07/16 11:37:35                                          | 45.11  | 122.51 | 13.1  | 1.9 | 21.4 km SE of Canby, OR      |      |          |  |  |
| 01/07/22 15:13:52                                          | 47.08  | 122.68 | 52.4  | 4.3 | 16.3 km ENE of Olympia, WA   | х    | x        |  |  |
| 01/07/24 13:31:06                                          | 47.49  | 122.02 | 16.4  | 2.2 | 9.3 km N of Maple Valley, WA |      |          |  |  |
| 01/07/29 06:26:53                                          | 47.74  | 117.46 | 0.6   | 2.1 | 8.9 km NNW of Spokane, WA    | х    |          |  |  |
| 01/07/29 06:37:58                                          | 47.72  | 117.45 | 6.2   | 1.3 | 7.5 km NNW of Spokane, WA    |      |          |  |  |
| 01/07/29 07:04:25                                          | 47.73  | 117.46 | 3.9   | 1.2 | 7.9 km NNW of Spokane, WA    |      |          |  |  |
| 01/07/30 20:35:09                                          | 47.73  | 117.46 | 0.6   | 1.8 | 8.2 km NNW of Spokane, WA    |      |          |  |  |
| 01/07/31 01:38:11                                          | 47.73  | 117.45 | 0.4   | 3.2 | 8.0 km NNW of Spokane, WA    | х    |          |  |  |
| 01/07/31 05:07:32                                          | 47.73  | 117.44 | 0.6   | 2.2 | 7.4 km NNW of Spokane, WA    |      |          |  |  |
| 01/07/31 05:24:33                                          | 47.74  | 117.45 | 0.5   | 1.5 | 9.2 km NNW of Spokane, WA    |      |          |  |  |
| 01/07/31 06:48:11                                          | 47.71  | 117.47 | 0.5   | 1.8 | 7.3 km NW of Spokane, WA     |      |          |  |  |
| 01/07/31 08:51:55                                          | 47.72  | 117.45 | 2.1   | 1.6 | 7.4 km NNW of Spokane, WA    |      |          |  |  |
| 01/07/31 16:27:43                                          | 47.72  | 117.45 | 0.6   | 1.8 | 7.4 km NNW of Spokane, WA    |      |          |  |  |
| 01/08/01 14:29:48                                          | 47.71  | 117.44 | 0.6   | 2.2 | 5.9 km NNW of Spokane, WA    |      |          |  |  |
| 01/08/09 13:31:24                                          | 47.73  | 117.46 | 0.5   | 1.5 | 8.2 km NW of Spokane, WA     |      |          |  |  |
| 01/08/19 06:17:32                                          | 48.25  | 121.61 | 1.7   | 3.0 | 1.0 km WSW of Darrington, WA |      |          |  |  |
| 01/08/25 17:52:34                                          | 48.23  | 121.60 | 2.7   | 2.1 | 2.1 km S of Darrington, WA   |      |          |  |  |
| - 01/08/30 03:47:31                                        | 48.23  | 121.62 | 4.8   | 2.7 | 2.9 km SW of Darrington, WA  |      |          |  |  |
| 01/09/28 18:34:53                                          | 47.68  | 117.38 | 1.8   | 2.8 | 1.8 km NE of Spokane, WA     | х    |          |  |  |
| 01/09/28 18:37:53                                          | 47.66  | 117.37 | 0.3   | 1.9 | 2.3 km ESE of Spokane, WA    |      |          |  |  |
| 01/09/28 18:38:37                                          | 47.67  | 117.40 | 0.6   | 2.6 | 0.7 km NNW of Spokane, WA    |      |          |  |  |
| 01/09/28 18:41:40                                          | 47.67  | 117.39 | 0.0   | 1.6 | 0.6 km NE of Spokane, WA     |      |          |  |  |

| TABLE 3B - Earthquakes M 2.5 or larger during the 3rd Quarter of 2001<br>Focal mechanisms noted where computed. Some earthquakes have more than one possible mechanism. |        |        |      |     |                                     |        |      |      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------|-----|-------------------------------------|--------|------|------|--|
| DATE-(UTC)-TIME                                                                                                                                                         | LAT(N) |        |      |     | COMMENTS                            | STRIKE |      | RAKE |  |
| yy/mm/dd hh:mm:ss                                                                                                                                                       | deg.   | deg.   | km   |     |                                     | deg.   | deg. | deg. |  |
| 01/07/01 05/44/12                                                                                                                                                       | 47.67  | 117.41 | 0.0  | 2.8 | 0.4 km W of Spokane, WA             | 345    | 50   | -130 |  |
| 01/07/01 05/45/43                                                                                                                                                       | 47.67  | 117.40 | 0.5  | 2.8 | 0.3 km SSE of Spokane, WA           | -      | -    | -    |  |
| 01/07/20 07/38/24                                                                                                                                                       | 43.53  | 121.74 | 8.4  | 2.6 | 46.8 km WSW of Newberry Caldera, OR | -      | -    | -    |  |
| 01/07/22 15/13/52                                                                                                                                                       | 47.09  | 122.69 | 52.4 | 4.3 | 16.3 km ENE of Olympia, WA          | 65     | 70   | 140  |  |
| 01/07/31 01/38/11                                                                                                                                                       | 47.73  | 117.46 | 0.4  | 3.2 | 8.0 km NNW of Spokane, WA           | -      | -    | -    |  |
| 01/08/19 06/17/32                                                                                                                                                       | 48.25  | 121.61 | 1.7  | 3.0 | 1.0 km WSW of Darrington, WA        | 65     | 40   | 100  |  |
|                                                                                                                                                                         |        |        |      |     | e -                                 | 115    | 75   | 170  |  |
| 01/08/30 03/47/31                                                                                                                                                       | 48.23  | 121.63 | 4.8  | 2.7 | 2.9 km SW of Darrington, WA         | 60     | 45   | 120  |  |
|                                                                                                                                                                         |        |        |      |     | 5                                   | 170    | 50   | 20   |  |
| 01/09/06 21/40/44                                                                                                                                                       | 45.79  | 124.54 | 35.1 | 2.9 | 65.7 km NW of Tillamook, OR         | -      | -    | -    |  |
| 01/09/14 11/22/57                                                                                                                                                       | 45.31  | 121.73 | 5.2  | 2.9 | 8.0 km SSW of Mt Hood, OR           | 5      | 45   | -90  |  |
| 01/09/15 12/21/09                                                                                                                                                       | 45.31  | 121.73 | 4.2  | 2.5 | 8.1 km SSW of Mt Hood, OR           | -      | -    | -    |  |
| 01/09/28 18/34/53                                                                                                                                                       | 47.68  | 117.39 | 1.8  | 2.8 | 1.8 km NE of Spokane, WA            | -      | -    | · _  |  |
| 01/09/28 18/38/37                                                                                                                                                       | 47.68  | 117.41 | 0.6  | 2.6 | 0.7 km NNW of Spokane, WA           | -      | -    | -    |  |



Figure 2. Located earthquakes, magnitude > 0, 3rd quarter, 2001. Filled squares indicate earthquakes with depth greater than 30km. Unfilled diamonds represent cities.


- 13 -













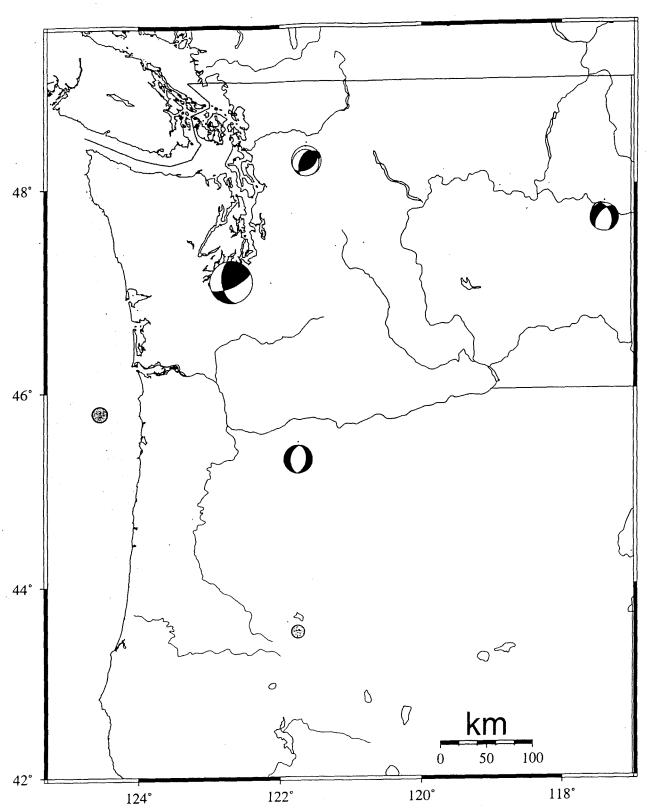




Figure 6. Events and fault plane solutions, 3rd quarter 2001, Magnitude greater than or equal to 2.5. Focal symbol size reflects earthquake magnitude. Events without fault plane solutions are shown as filled dots.

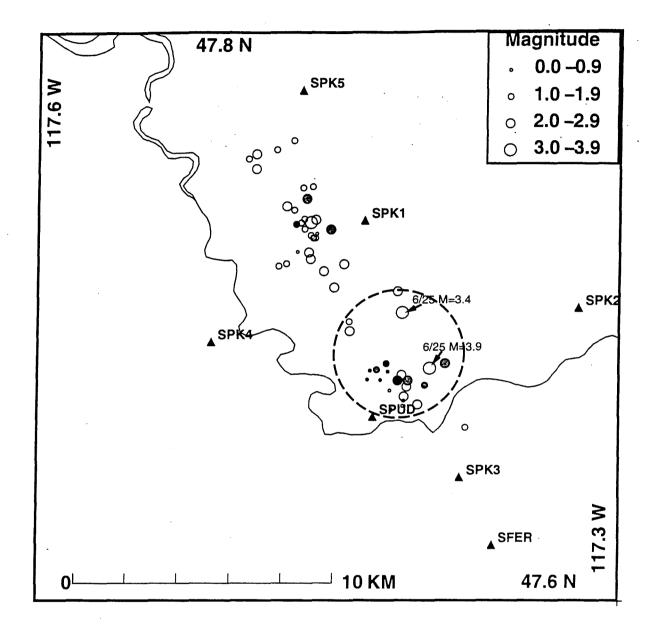



Figure 7. Overview of station locations and earthquakes recorded in the Spokane area Jan. 1– Sept. 30, 2001. Earthquakes are shown as circles. Unfilled circles indicate events with the poorest-quality solutions. Gray shaded circles have solution quailities of CC or better. Black-filled circles represent the best – located events (azimuthal gap <135 degrees, less than 10 km to nearest station, CC or better quality, and read on at least 7 stations). Although the locations shown suggest a northwest-southeast trend, it is more likely that all the events occurred in the area indicated by the dashed circle just northeast of station SPUD. The station distribution varied during the sequence, and the clock at station SPUD may have drifted, making it impossible to obtain correct relative locations for the events of the sequence.

#### **OREGON SEISMICITY**

During the third quarter of 2001, a total of 96 earthquakes were located in Oregon between 42.0° and 45.5° north latitude, and between 117° and 125° west longitude. One small (M 1.9; July 16) earthquake in Oregon was reported felt this quarter. The most interesting feature of seismic activity in Oregon this quarter were two swarms of earthquakes near Mt. Hood. A total of 66 shallow (depths <10 km) earthquakes were located near Mt. Hood between 45-45.5 N latitude and 121-122 west longitude during the quarter.

The first swarm, 5 km SSE of Mt. Hood, occurred mainly on August 20, when 9 events (none larger than magnitude 1.3, and mostly at depths <5 km) were located. The second swarm was more vigorous, longer lasting, and slightly deeper (most events 7-9 km deep). It was located in a different area 8 km SSW of Mt Hood, and began on August 21 with very small (M<1) events. Its most intense activity was Sept. 11-16, and included 5 events magnitude 2.0 or larger and 15 events magnitude 1.0 or larger. The largest event was magnitude 2.9 on Sept. 14.

In the Klamath Falls area, 14 earthquakes occurred in the third quarter of 2001. Since 1994, most earthquakes in the Klamath Falls area have been considered aftershocks of a pair of damaging earthquakes in September of 1993. The 1993 earthquakes were followed by a vigorous aftershock sequence which decreased over time.

Elsewhere in Oregon, on Aug. 21 a M 1.9 earthquake at about 5 km depth was located near the Three Sisters volcanic area in Oregon. Earthquakes are uncommon in this area. Another interesting nearby event was a clear rockfall signal noted on seismograms HUO and TCO on Sept. 26. The rockfall was visually confirmed to be on South Sister. Bob Norris and Willie Scott of the USGS estimated the volume of the rockfall based on the signal (Norris) and visual observations (Scott) at between 10,000 and 50,000 cubic meters, large enough to leave a noticeable deposit on the Prouty Glacier. Mt. Rainier has rockfalls this size every few years or so, but they are rarer at South Sister, as it is a much smaller volcano and has only a few cliffs that are steep and tall enough to generate a rockfall of that size.

#### WESTERN WASHINGTON SEISMICITY

During the third quarter of 2001, 466 earthquakes were located between 45.5° and 49.5° north latitude and between 121° and 125.3° west longitude. Five earthquakes were felt this quarter in western Washington. Details are in Table 3.

The largest felt earthquake in western Washington was a magnitude 4.3 earthquake in the early morning hours of July 22. It was located at 52 km depth about 18 km NE of Olympia; close to the M 6.8 Nisqually earthquake on Feb. 28, 2001. This July 22 earthquake may be a late aftershock of the Nisqually earthquake. It was well recorded by strong motion instruments in the Puget Sound.

## http://www.ess.washington.edu/SEIS/EQ\_Special/WEBDIR\_01072215135p/strong\_motion.html

A ShakeMap is available at:

#### http://spike.ess.washington.edu/shake/0107221513/intensity.html

and a CIIM "felt" map at:

#### http://pasadena.wr.usgs.gov/shake/pnw/STORE/X7221513/ciim display.html

The CIIM web site received about 750 "felt" reports from 164 different zip codes around Puget Sound. No damage was reported.

#### CASCADE VOLCANOS

**Mount Rainier Area:** Figure 4 shows earthquakes near Mount Rainier. The number of events in close proximity to the cone of Mt. Rainier varies over the course of the year, since the source of much of the shallow activity is presumably ice movement or avalanching at the surface, which is seasonal in nature. Events with very low frequency signals (1-3 Hz) believed to be icequakes are assigned type "L" in the catalog. Emergent, very long duration signals, probably due to rockfalls or avalanches, are assigned type "S" (see Key to Earthquake Catalog). There were no events flagged "L" or "S" were located at Mount Rainier this quarter but 120 "L" or "S" events were recorded, but were too small to locate reliably. Type L and S events are not shown in Fig. 4.

This quarter, on August 14 (PDT), a small volcanic lahar was recorded on three seismometers at Mt. Rainier as it flowed down Van Trump Creek and the Nisqually River. The event lasted for several hours. Seimograms and spectrograms are available on our web site at:

http://www.ess.washington.edu/SEIS/PNSN/WEBICORDER/Rainier/

A total of 50 tectonic events (25 of these were smaller than magnitude 0.0, and thus are not shown in Fig. 4) were located within the region shown in Fig. 4. Of these, 33 were tectonic events located in the "Western Rainier Seismic Zone" (WRSZ), a north-south trending lineation of seismicity approximately 15 km west of the summit of Mt. Rainier (for counting purposes, the western zone is defined as 46.6-47 degrees north latitude and 121.83-122 west longitude). The largest tectonic earthquake located near Mt. Rainier this quarter was the felt magnitude 1.8 earthquake on August 28, located about 27 km south-southwest of the summit at a depth of about 4 km.

This quarter, there were 10 (4 of them smaller than magnitude 0.0 and thus not shown in Fig. 4) higher-frequency tectonic-style earthquakes within 5 km of the summit. The remaining events were scattered around the cone of Rainier as seen in Fig. 4.

Mount St. Helens Area: Figure 5 shows volcano-tectonic earthquakes near Mount St. Helens. Low frequency (L) and avalanche or rockfall events (S) are not shown. This quarter, 142 earthquakes were located at Mount St. Helens in the area shown in Fig. 5. Of these earthquakes, 40 were magnitude 0.0 or larger and 9 were deeper than 4 km. The largest tectonic earthquake at Mount St. Helens this quarter was a magnitude 1.5 event on Sept. 25 located .6 km NNE of Mount St. Helens.

Two type "S" or "L" events were located at Mount St. Helens, and 356 "L" or "S" events too small to locate were recorded.

#### EASTERN WASHINGTON SEISMICITY

During the second quarter of 2001, 101 earthquake's were located in eastern Washington in the area between 45.5-49.5 degrees north latitude and 117-121 degrees west longitude.

The most unusual activity in eastern Washington this quarter was the continuation of a very unusual sequence of earthquakes in the Spokane urban area.

## SPECIAL REPORT - Spokane Earthquake Activity in the Summer of 2001

On the morning of June 25 (at 7:15 and 8:01 AM PDT), two earthquakes, M 3.9 and M 3.4 were widely felt in urban Spokane. Additional smaller events continued through the day. Spokane is an area that historically has been seismically quiet, and is located at the very edge of the seismograph network operated by the Pacific Northwest Seismograph Network (PNSN). The PNSN immediately began continuous recording of the three nearest network stations (64-104 km away).

Because of the ongoing nature of the seismicity and its location in an urban area, on June 26 temporary station SPUD was installed at the Spokane County Public Works building (on W. Broadway between Monroe and Madison) to improve our ability to locate Spokane earthquakes. As the sequence continued, five additional stations were installed in Spokane between June 30 and July 2.

By the end of the third quarter, the PNSN had located a total of 61 events in the Spokane sequence. Another twenty-two events were recorded, but could not be located. Because a variety of seismograph configurations have operated, the accuracy of event locations has varied over the course of the sequence.

The Spokane sequence began with a M 2.0 foreshock on May 24, a month before the larger shocks. This quake was felt by residents, who also reported feeling other shaking around that time, likely due to earthquakes too small to be record by the PNSN. Reports of shaking in May and early June became known to us only after activity intensified in late June. On June 25 the two largest events in the sequence (M 3.9 and M 3.4 on 6/25) occurred, and twenty-three other events were located during the following week. Some of the locations on and after June 26 included readings from the quickly-installed temporary Spokane station SPUD, although SPUD had some telemetry problems and operated only intermittently during the sequence.

Around the beginning of July, when the 5-station temporary array was installed in Spokane, activity dropped off. Between July 2 and July 12 only 16 earthquakes (mostly tiny events with data only from the temporary five-station array) were located. The proximity and number of the stations made these earthquakes the most accurately located of the sequence. All of the earthquakes located with the 5-station array are north and east of the Spokane River, inside the river's bend. This is also near where the two largest

shocks on June 25 were located using regional seismograph data, and in the area where residents report feeling continued shaking, between Riverfront Park and Corbin Park. Figure 7 shows location of seismometer stations and earthquakes located near Spokane between January and September, 2001.

The July 2-12 earthquakes appear to be extremely shallow, and residents reported feeling many, but not all, of the recorded earthquakes. Loud explosion-like sounds were often reported along with the shaking. Reports of shaking were also received for times when no activity was recorded, probably due to a heightened sensitivity to typical background vibrations that occur in the urban environment. No earthquakes were recorded between July 13 and July 28.

The temporary 5-station array was removed on July 25, and activity picked up again almost immediately. Fourteen events were located between July 29 and August 1. The largest event in this time period was magnitude 3.2, and at least a dozen events were reported felt between July 29 and August 1, much disturbing residents.

Following August 1, seismicity quieted. SPUD continued to operate and an additional permanent station, SFER at Ferris High School, was installed on August 9. Just one event was located on August 9, but it occurred in the early morning hours before the SFER installation. No further events were located in August or during the first three weeks of September.

SPUD was removed on September 25. It had been borrowed from another project and had to be returned. Seismicity picked up just a few days later, when four events occurred within a ten-minute period on Sept. 28. The largest was a magnitude 2.8 that was noticed by many people in the downtown area, as was the magnitude 2.6 that followed about 4 minutes later.

There is no history of damaging earthquakes in the Spokane area, nor any comparable sequence of small events. While the current sequence continued through the 3rd quarter, it is notable that since June the maximum magnitude and number of earthquakes in each burst of activity has declined and the time lapses between bursts of activity have lengthened.

#### Spokane Geology and Earthquake History:

Geologists have long suspected that the course of the Spokane River was structurally controlled. It flows east to west toward Spokane, where it abrubtly changes to a northwest direction. Hangman Creek (also called Latah Creek) flows into the Spokane River near the bend along the same NW striking lineament. This lineament is clearly expressed in the topography, paricularly along Hangman Creek, which is quite straight compared to the complex dendritic pattern more commonly displayed by other drainage in this area (see digital elevation map). Bob Durkey of the Washington State Dept. of Natural Resources has mapped the Hangman Creek watershed, and named this structure the Latah Fault. An brief discussion on the possible relation of the Latah Fault to the Spokane earthquakes has been published in Washington Geology (Derkey, R.E., and M.H. Hamilton, 2001, Spokane Earthquake point to Latah Fault?, Washington Geology, V. 29, No 1/2, pg. 42).

However, direct evidence for faulting is skimpy: At Hangman Valley Golf course, flood deposits are uptilted to 35 degrees. Well data from either side of Hangman Creek shows elevation or thickness differences in the Grande Ronde Columbia River Basalt (CRB) flow. However, the flow was deposited onto a Miocene landscape and it is difficult to determine whether differences result from flows interacting with the ancient landscape or from faulting. Likewise exposures of basalt along the Spokane River near "Bowl and Pitcher" in Riverside State Park differ from what is seen at "Five Mile Prairie" across the river. Again it is difficult to pinpoint the cause of this.

Very little is known about the seismic hazard to Spokane, since there is no history of large damaging earthquakes in the area. It is unusual to have any earthquake activity at all in Spokane, and no sequence like this one has been noted in the past. Looking back at Spokane history, minor damage has been caused by events outside the immediate Spokane area (e.g. Hebgen Lake quake of 1959), and there is also a history of a few small quakes felt only locally in Spokane. Events felt only in and around Spokane occurred in 1915, 1920, 1922, 1941, 1942, 1948, 1952, 1961 and 1962. In some instances the shaking was accompanied by explosion-like noises, and in some cases several events close together in time were reported. No other extended sequence like the one in 2001 is known.

Although never previously noted near Spokane, earthquake swarm activity (defined as a cluster of small close-together earthquakes without a distinct, sizable mainshock) has previously been seen in eastern Washington. One notable swarm occurred near Othello and lasted nearly a year. It began in November of 1987 and included about 200 located earthquakes, about 20 of them larger than magnitude 2.0. The largest event in the Othello sequence was magnitude 3.3.

Earthquake locations in the current sequence appear spread out along the trend of the Hangman Creek structure, but this is probably misleading as many of the far-flung locations are not well constrained. The best located earthquakes (using data from the 5-station temporary array) were immediately inside the bend in the river, approximately near the Corbin Park neighborhood.

A close examination of events that appear to be to the northwest indicates that those events either lacked a close-by station or, if the data included station SPUD, occurred after July 28. The internal clock of station SPUD may have drifted, and the drift would increase with time. SPUD waveforms from events apparently to the northwest appear no different than waveforms from events located closer to SPUD. It seems fairly likely that all events in the swarm have been located in a single cluster close to the immediate downtown Spokane area.

## Eastern Washington Geology and Earthquake History

Placing Spokane in a wider context; it is important to realize that, although less active than western Washington, eastern Washington does have faults capable of producing damaging earthquakes. Historic damaging earthquakes in eastern Washington include the 1872 earthquake (M 6.8-7.3), near southern Lake Chelan. This earthquake was one of the largest earthquakes known in Washington, and it was widely felt in Washington and British Columbia and followed by many aftershocks. The same area, near Entiat, experienced a M 5.0 earthquake in 1959, and there is a persistent cluster of tiny earthquakes in the area.

An earthquake near Walla Walla in 1936 (M 6.4) caused extensive damage to chimneys and walls, ground cracking, and water level and well flow changes, with numerous aftershocks reported. Since 1936, several earthquakes around magnitude 4.0 have been located in the same area.

Large earthquakes at some distance from eastern Washington are sometimes felt and can even be damaging. For example, the 1959 M 7.5 Hebgen Lake earthquake in Montana was felt as far as Seattle, and caused minor damage in Spokane, as did the 1983 M 7.2 Borah Peak, Idaho earthquake.

Overall, the rate of seismicity in eastern Washington is low, although the seismology lab at the University of Washington locates 200-300 earthquakes per year in eastern Washington and northeastern Oregon. Only a few earthquakes each year are usually large enough to be felt. Earthquakes in eastern Washington are shallow, within the upper 10 miles or so of the Earth's crust. Although we know that damaging earthquakes can occur in eastern Washington, the low rate of seismicity makes evaluating earthquake hazards and identifying dangerous faults difficult. Events like the 1872 and 1936 earthquakes are likely to recur, and other faults may also break. We look for clues in the geology, but the processes that produce faults and deform, fold, and uplift rocks are slow and the traces they leave in the landscape can be difficult to interpret. Active faults may never break the surface, faults exposed at the surface may be inactive, and evidence of faulting can be eroded away or obscured by new deposits.

In eastern Washington the landscape includes older rocks in the Cascade highlands and geologically young (15 million years old) flood basalts covering the Columbia Plateau. The older (100 million years) Mesozoic crystalline rocks of the Cascade highlands contain faults, but the absence of young rocks makes it difficult to determine whether those faults are still active. Earthquakes of magnitude 4.5 - 5.0 have occurred in the Cascade highlands in recent years, and larger earthquakes cannot be ruled out. Complex geologic structures within the older rocks extend beneath the layered flood basalts. Large faults in the eastern Columbia Plateau, near the Spokane area and near Clarkston/Lewiston were active while the basalt flows were occurring, but show little evidence of significant recent activity. In the western part of the Columbia Plateau, numerous faults showing very recent activity distort the flood basalts. The Yakima Fold Belt is a series of east-west trending folded and faulted ridges in the basalts. The most prominent ridges are in the southwestern plateau, and include the Saddle Mountains, Rattlesnake Mountain, Frenchman Hills, and Horse Heaven Hills. Swarms of small earthquakes are common and there are large geologically recent thrust faults that may be capable of producing earthquakes larger than magnitude 7. Yakima Fold Belt structures also extend into the northwestern plateau, and are a feasible source for the 1872 earthquake.

# Earthquake Mitigation for low-seismicity areas

Damaging earthquakes sometimes occur even in areas of low seismicity When there is not enough information to estimate the frequency or maximum magnitude of damaging earthquakes, a conservative approach is to plan for the possibility of a damaging earthquake of moderate size (magnitude 5.0). There are many low-cost mitigation measures such as family emergency plans, restraining gas water heaters and tall bookcases, etc. Some mitigation activities, such as bracing or removal of masonry parapets and anchoring of masonry walls can be implemented during other refurbishing projects. The 2001 sequence has demonstrated that there is an active seismogenic source in the Spokane area. Damaging earthquakes near Wenatchee (1872) and Walla (1936), the presence of large geologically recent faults in the Tri-cities area, and the generally young geology of Washington suggest that basic mitigation activities should be considered by communities in eastern Washington.

|                                                                                |                                                                                                                                                                  |                                                                                                                                              |                                                                                                                                                                       | July 2                                                                                     | 2001                                                                       |                                                                               |                                                                           |                                                                                      |                                                    |                                                          |                                                                                                  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| DAY<br>1<br>1                                                                  | TIME<br>05:44:12.67<br>05:45:43.24<br>05:46:51.14                                                                                                                | LAT<br>47 40.32<br>47 40.15<br>47 40.12                                                                                                      | LON<br>117 24.61<br>117 24.19<br>117 24.66                                                                                                                            | DEPTH<br>0.02*<br>0.50#<br>2.97                                                            | M<br>2.8<br>2.8<br>0.9                                                     | NS/NP<br>7/07<br>6/07<br>4/07                                                 | GAP<br>218<br>234<br>231                                                  | RMS<br>0.32<br>0.37<br>0.23                                                          | O<br>CD<br>CD<br>BD                                | MOD<br>N3<br>N3<br>N3                                    | TYP<br>F<br>F                                                                                    |
| 1                                                                              | 05:49:15.01<br>06:07:13.52<br>08:43:00.21                                                                                                                        | 47 40.45<br>47 40.52<br>47 40.91                                                                                                             | 117 25.05<br>117 24.53<br>117 25.22                                                                                                                                   | 2.03<br>0.02*<br>0.57                                                                      | 0.8<br>2.3<br>-0.2                                                         | 7/07<br>7/07<br>4/08                                                          | 193<br>209<br>132                                                         | 0.28<br>0.33<br>0.04                                                                 | BD<br>CD<br>AD                                     | N3<br>N3<br>N3                                           | F                                                                                                |
| 2<br>3<br>5<br>5<br>6                                                          | 17:48:28.97<br>21:20:27.63<br>15:34:15.54<br>21:53:46.27<br>02:11:34.19                                                                                          | 47 40.67<br>47 40.65<br>47 40.23<br>47 40.88<br>47 40.88                                                                                     | 117 25.36<br>117 24.81<br>117 24.62<br>117 25.46<br>117 25.11                                                                                                         | 0.47*<br>0.03*<br>1.65<br>1.73<br>2.57                                                     | 0.6<br>2.2<br>0.5<br>1.2<br>0.4                                            | 12/13<br>16/16<br>8/08<br>10/10<br>8/08                                       | 92<br>80<br>142<br>136<br>132                                             | 0.18<br>0.20<br>0.02<br>0.03<br>0.02                                                 | BB<br>BA<br>AC<br>AC<br>AB                         | N3<br>N3<br>N3<br>N3<br>N3                               | F<br>F                                                                                           |
| 1<br>2<br>2<br>3<br>5<br>5<br>6<br>8<br>8<br>8<br>8<br>9<br>9<br>10<br>2<br>12 | 09:22:45.08<br>09:58:48.44<br>11:16:32.98<br>11:17:13.61<br>03:40:11.40<br>17:11:16.00<br>11:55:10.79<br>11:21:51.83<br>11:26:55.44                              | 47 40.39<br>47 41.00<br>47 41.01<br>47 40.72<br>47 40.87<br>47 40.87<br>47 40.43<br>47 40.68<br>47 40.68<br>47 40.39                         | 117 24.45<br>117 25.18<br>117 25.18<br>117 25.43<br>117 25.43<br>117 25.68<br>117 25.68<br>117 25.50<br>117 25.76<br>117 25.82                                        | 1.41<br>0.58<br>0.51<br>2.43<br>0.58<br>0.29<br>2.50<br>0.54<br>2.17                       | -0.9<br>-0.5<br>1.5<br>-0.6<br>0.0<br>-0.8<br>-0.6<br>0.5<br>-0.6          | 6/06<br>7/07<br>14/15<br>6/06<br>8/08<br>6/06<br>7/08<br>8/08<br>3/06         | 134<br>130<br>103<br>213<br>139<br>135<br>150<br>146<br>156               | 0.04<br>0.12<br>0.30<br>0.02<br>0.02<br>0.02<br>0.06<br>0.09<br>0.04                 | AC<br>AB<br>CB<br>AD<br>AC<br>AC<br>AC<br>AD       | N3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3 | F                                                                                                |
| 12<br>12<br>29<br>29<br>30<br>31<br>31<br>31<br>31<br>31<br>31                 | 1:29:11.47<br>06:26:53.84<br>06:37:58.49<br>07:04:25.52<br>20:35:09.62<br>01:38:11.76<br>05:07:32.71<br>05:24:33.95<br>06:48:11.75<br>08:51:55.82<br>16:27:43.30 | 47 40.23<br>47 44.49<br>47 43.72<br>47 43.85<br>47 43.85<br>47 43.88<br>47 44.00<br>47 43.85<br>47 44.75<br>47 43.13<br>47 43.66<br>47 43.75 | 117 22.78<br>117 27.68<br>117 27.75<br>117 27.75<br>117 27.75<br>117 27.75<br>117 27.55<br>117 26.92<br>117 27.50<br>117 28.30<br>117 27.40<br>117 27.46<br>117 27.36 | 2.31<br>0.55<br>6.24<br>3.87<br>0.63<br>0.45\$<br>0.63<br>0.53<br>0.54\$<br>2.13\$<br>0.60 | -1.6<br>2.1<br>1.3<br>1.2<br>1.8<br>3.2<br>2.2<br>1.5<br>1.8<br>1.6<br>1.8 | 3/06<br>6/07<br>4/05<br>4/07<br>7/07<br>7/08<br>5/07<br>11/12<br>5/09<br>6/07 | 154<br>139<br>137<br>136<br>135<br>138<br>144<br>141<br>204<br>213<br>138 | 0.02<br>0.22<br>0.01<br>0.09<br>0.16<br>0.32<br>0.14<br>0.38<br>0.64<br>0.33<br>0.22 | AD<br>BC<br>AD<br>BD<br>DC<br>CD<br>DD<br>CD<br>BC | N3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3 | 년<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| 31<br>31                                                                       | 16:28:58.63<br>16:40:39.03                                                                                                                                       | 47 43.75<br>47 43.37                                                                                                                         | 117 27.36<br>117 27.96                                                                                                                                                | 0.62<br>0.54                                                                               | 0.9<br>0.9                                                                 | 3/05<br>3/06                                                                  | 139<br>131                                                                | 0.41<br>0.47                                                                         | CD<br>CD                                           | N3<br>N3                                                 |                                                                                                  |
| DAY<br>1<br>9                                                                  | TIME<br>12:49:20.78<br>14:29:48.83<br>13:31:24.17                                                                                                                | LAT<br>47 44.26<br>47 43.11<br>47 43.95                                                                                                      | LON<br>117 28.07<br>117 26.52<br>117 28.01                                                                                                                            | Aug 2<br>DEPTH<br>0.63<br>0.55<br>0.51                                                     | 001<br>M<br>1.2<br>2.2<br>1.5                                              | NS/NP<br>4/06<br>4/05<br>7/08                                                 | GAP<br>135<br>147<br>134                                                  | RMS<br>0.20<br>0.06<br>0.21                                                          | ,Q<br>BD<br>AD<br>BB                               | MOD<br>N3<br>N3<br>N3                                    | TYP<br>F<br>F                                                                                    |
| DAY<br>28<br>28<br>28<br>28<br>28                                              | TIME<br>18:34:53.83<br>18:37:53.71<br>18:38:37.73<br>18:41:40.97                                                                                                 | LAT<br>47 41.01<br>47 39.65<br>47 40.65<br>47 40.55                                                                                          | LON<br>117 23.36<br>117 22.74<br>117 24.49<br>117 23.97                                                                                                               | Sept 20<br>DEPTH<br>1.78*<br>0.31<br>0.58<br>0.02*                                         | 001<br>M<br>2.8<br>1.9<br>2.6<br>1.6                                       | NS/NP<br>6/06<br>4/04<br>6/07<br>6/06                                         | GAP<br>148<br>151<br>135<br>139                                           | RMS<br>0.20<br>0.44<br>0.37<br>0.20                                                  | Q<br>BC<br>CD<br>CC<br>BC                          | MOD<br>N3<br>N3<br>N3<br>N3                              | TYP<br>F<br>F<br>F<br>F                                                                          |

TABLE 3C - Earthquakes located near Spokane during the 3rd Quarter of 2001 (See "Key to Earthquake Catalog in Table 4")

Times, locations, and depths of all felt earthquakes in the PNSN region this quarter are given in Table 3A.

#### OTHER SOURCES OF EARTHQUAKE INFORMATION

We provide automatic computer-generated alert messages about significant Washington and Oregon earthquakes by e-mail, FAX or via the pager-based RACE system to institutions needing such information, and we regularly exchange phase data via e-mail with other regional seismograph network operators. The "Outreach Activities" section describes how to access PNSN data via e-mail, Internet, and World-Wide-Web. To request additional information by e-mail, contact seis\_info@ess.washington.edu.

Earthquake information in the quarterlies has been published in final form by the Washington State Department of Natural Resources as information circulars entitled "Earthquake Hypocenters in Washington and Northern Oregon" covering the period 1970-1989 (see circulars Nos. 53, 56, 64-66, 72, 79, 82-84, and 89). These circulars, plus circular No. 85, "Washington State Earthquake Hazards", are available from Washington Dept. of Natural Resources, Division of Geology and Earth Resources, Post Office Box 47007, Olympia, WA. 98504-7007, or by telephone at (360) 902-1450.

Several excellent maps of Pacific Northwest seismicity are available. A very colorful perspectiveview map (18" x 27") entitled "Major Earthquakes of the Pacific Northwest" depicts selected epicenters of strong earthquakes (magnitudes > 5.1) that have occurred in the Pacific Northwest. A more detailed fullcolor map is called "Earthquakes in Washington and Oregon 1872-1993", by Susan Goter (USGS Open-File Report 94-226A). It is accompanied by a companion pamphlet "Washington and Oregon Earthquake History and Hazards", by Yelin, Tarr, Michael, and Weaver (USGS Open-File Report 94-226B). The pamphlet is also available separately. Maps can be ordered from: "Earthquake Maps", U.S. Geological Survey, Box 25046, Federal Center, MS 967, Denver, CO 80225, phone (303) 273-8477. The price of each map is \$12. (including US shipping and handling).

USGS Cascades Volcano Observatory has a video, "Perilous Beauty: The Hidden Dangers of Mount Rainier", about the risk of lahars from Mount Rainier. Copies are available through: North west Interpretive Association (NWIA), 909 First Avenue Suite 630, Seattle WA 98104, Telephon e: (206) 220-4141, Fax: (206) 220-4143.

Other regional agencies provide earthquake information. These include the Geological Survey of Canada (Pacific Geoscience Centre, Sidney, B.C.; (250) 363-6500, FAX (250) 363-6565), which produces monthly summaries of Canadian earthquakes; the US Geological Survey which produces weekly reports called "Seismicity Reports for Northern California" (USGS, attn: Steve Walter, 345 Middlefield Rd, MS-977, Menlo Park, CA, 94025) and "Weekly Earthquake Report for Southern California" (USGS, attn: Dr. Kate Hutton or Dr. Lucy Jones, CalTech, Pasadena, CA.).

# Key to Earthquake Catalog in Table 4

- TIME Origin time is calculated for each earthquake on the basis of multi-station arrival times. Time is given in Coordinated Universal Time (UTC), in hours:minutes:seconds. To convert to Pacific Standard Time (PST) subtract eight hours, or to
   Pacific Daylight Time subtract seven hours.
- LAT North latitude of the epicenter, in degrees and minutes.
- LONG West longitude of the epicenter, in degrees and minutes.
- **DEPTH** The depth, given in kilometers, is usually freely calculated from the arrival-time data. In some instances, the depth must be fixed arbitrarily to obtain a convergent solution. Such depths are noted by an asterisk (\*) in the column immediately following the depth. A \$ or a # following the depth mean that the maximum number of iterations has been exceeded without meeting convergence tests and both the location and depth have been fixed.
- MAG Coda-length magnitude M<sub>c</sub>, an estimate of local magnitude M<sub>L</sub> (Richter, C.F., 1958, Elementary Seismology: W.H. Freeman and Co., 768p), calculated using the coda-length/magnitude relationship determined for Washington (Crosson, R.S., 1972, Bull. Seism. Soc. Am., v. 62, p. 1133-1171). Where blank, data were insufficient for a reliable magnitude determination. Normally, the only earthquakes with undetermined magnitudes are very small ones. Magnitudes may be revised as we improve our analysis procedure.
- NS/NP NS is the number of station observations, and NP the number of P and S phases used to calculate the earthquake location. A minimum of three stations and four phases are required. Generally, more observations improve the quality of the solution.
- GAP Azimuthal gap. The largest angle (relative to the epicenter) containing no stations.
- RMS The root-mean-square residual (observed arrival time minus predicted arrival time) at all stations used to locate the earthquake. It is only useful as a measure of the quality of the solution when 5 or more well-distributed stations are used in the solution. Good solutions are normally characterized by RMS values less than about 0.3 sec.
- Q Two Quality factors indicate the general reliability of the solution (A is best quality, D is worst). Similar quality factors are used by the USGS for events located with the computer program HYPO71. The first letter is a measure of the hypocenter quality based on travel-time residuals. For example: A quality requires an RMS less than 0.15 sec while an RMS of 0.5 sec or more is D quality (estimates of the uncertainty in hypocenter location also affect this quality parameter). The second letter of the quality code depends on the spatial distribution of stations around the epicenter, i.e. number of stations, their azimuthal distribution, and the minimum distance (DMIN) from the epicenter to a station. Quality A requires a solution with 8 or more phases,  $GAP \le 90^{\circ}$  and  $DMIN \le (5 \text{ km or depth, whichever is greater})$ . If the number of phases, NP, is 5 or fewer or  $GAP > 180^{\circ}$  or DMIN > 50 km the solution is assigned quality D.
- MOD The crustal velocity model used in location calculations.
  - P3 Puget Sound model
  - C3 Cascade model
  - S3 Mt. St. Helens model including Elk Lake
  - N3 northeastern model
  - E3 southeastern model
  - O0 Oregon model
  - K3 Southern Oregon, Klamath Falls area model
  - R0 and J1 Regional and Offshore models
- **TYP** Events flagged in Table 4 use the following code:
  - F earthquake reported to have been felt
  - P probable explosion
  - L low frequency earthquake (e.g. glacier movement, volcanic activity)
  - H handpicked from helicorder records
  - S Special event (e.g. rockslide, avalanche, volcanic steam emission, harmonic tremor, sonic boom), not a man-
  - made explosion or tectonic earthquake
    - X known explosion

ų

# TABLE 4

# Tectonic Earthquakes, Magnitude 2.0 or larger, Third Quarter, 2001.

Within an area 42-49.5 degrees north latitude and 117-125.3 degrees west longitude.

| July 2001 |             |          |           |         |     |        |      |      |    |      |     |
|-----------|-------------|----------|-----------|---------|-----|--------|------|------|----|------|-----|
| DAY       | TIME        | LAT      | LON       | DEPTH   | М   | NS/NP  | GAP  | RMS  | Q  | MOD  | TYP |
| 1         | 05:44:12.67 | 47 40.32 | 117 24.61 | 0.02*   | 2.8 | 7/07   | 218  | 0.32 | CD | N3   | F   |
| 1         | 05:45:43.24 | 47 40.15 | 117 24.19 | 0.50#   | 2.8 | 6/07   | 234  | 0.37 | CD | N3   | F   |
| 1         | 06:07:13.52 | 47 40.52 | 117 24.53 | 0.02*   | 2.3 | 7/07   | 209  | 0.33 | CD | N3   | F   |
| 3         | 04:37:31.69 | 48 37.81 | 122 30.56 | 16.37   | 2.5 | 29/33  | 96   | 0.25 | BB | P3   |     |
| 3         | 21:20:27.63 | 47 40.65 | 117 24.81 | 0.03*   | 2.2 | 16/16  | 80   | 0.20 | BA | N3   | F   |
| 7         | 02:03:14.86 | 47 30.15 | 122 18.58 | 24.80   | 2.3 | 54/58  | · 32 | 0.13 | AA | P3   |     |
| 9         | 21:40:33.06 | 45 14.37 | 122 36.92 | 27.78   | 2.2 | 36/37  | 80   | 0.27 | BA | 00   |     |
| 20        | 07:38:24.06 | 43 31.50 | 121 44.38 | 8.36#   | 2.6 | 18/19  | 159  | 0.25 | BD | 00   |     |
| 22        | 15:13:52.43 | 47 05.28 | 122 41.13 | 52.41   | 4.3 | 87/102 | 33   | 0.23 | BA | P3   | F   |
| 24        | 13:31:06.56 | 47 29.56 | 122 01.23 | 16.44   | 2.2 | 50/54  | 33   | 0.15 | BA | P3   | F   |
| 24        | 17:57:02.41 | 47 39.83 | 120 01.44 | 7.13    | 2.0 | 28/35  | 43   | 0.30 | CA | N3   |     |
| 27        | 05:02:16.80 | 47 41.65 | 122 06.56 | 1.71    | 2.0 | 26/30  | 51   | 0.23 | BB | P3   |     |
| 29        | 06:26:53.84 | 47 44.49 | 117 27.68 | 0.55    | 2.1 | 6/07   | 139  | 0.22 | BC | N3   | F   |
| 31        | 01:38:11.76 | 47 44.00 | 117 27.55 | 0.45\$  | 3.2 | 7/07   | 138  | 0.32 | DC | . N3 | F   |
| 31        | 05:07:32.71 | 47 43.85 | 117 26.92 | 0.63    | 2.2 | 7/08   | 144  | 0.14 | AC | N3   | F   |
|           |             |          |           |         |     |        |      |      |    |      |     |
|           |             |          |           | Aug 2   | 001 |        |      |      |    |      |     |
| DAY       | TIME        | LAT      | LON       | DEPTH   | Μ   | NS/NP  | GAP  | RMS  | Q  | MOD  | TYP |
| 1         | 14:29:48.83 | 47 43.11 | 117 26.52 | 0.55    | 2.2 | 4/05   | 147  | 0.06 | AD | N3   | F · |
| 2         | 15:35:23.27 | 47 43.59 | 122 23.13 | 27.05   | 2.2 | 56/62  | 27   | 0.27 | BA | P3   |     |
| 13        | 11:47:28.75 | 48 15.59 | 120 01.54 | 7.17    | 2.3 | 18/20  | 245  | 0.41 | CD | N3   |     |
| 15        | 00:37:29.52 | 47 39.64 | 122 24.90 | 26.07   | 2.2 | 50/58  | 24   | 0.16 | BA | P3   |     |
| 19        | 06:17:32.96 | 48 15.04 | 121 36.88 | 1.69*   | 3.0 | 50/51  | 121  | 0.33 | CC | C3   | F   |
| 20        | 06:14:09.32 | 45 17.46 | 120 08.61 | 8.81#   | 2.1 | 12/12  | 245  | 0.27 | BD | O0   |     |
| 25        | 17:52:34.65 | 48 14.07 | 121 36.37 | 2.69    | 2.1 | 36/41  | 84   | 0.40 | CC | C3   | F   |
| 30        | 03:47:31.88 | 48 14.01 | 121 37.63 | 4.75\$  | 2.7 | 54/65  | 81   | 0.47 | CC | C3   | F   |
| 31        | 14:39:17.47 | 47 01.54 | 121 52.16 | 17.86*  | 2.1 | 54/67  | 35   | 0.16 | BA | C3   |     |
|           |             |          |           |         |     |        |      |      |    |      |     |
|           |             |          |           | Sept 20 |     |        |      |      |    |      |     |
| DAY       | TIME        | LAT      | LON       | DEPTH   | М   | NS/NP  | GAP  | RMS  | Q  | MOD  | ТҮР |
| 6         | 21:40:44.16 | 45 47.14 | 124 32.51 | 35.09   | 2.9 | 12/13  | 225  | 0.32 | CD | P3   |     |
| 9         | 04:06:29.07 | 48 11.85 | 122 40.85 | 56.44   | 2.3 | 61/63  | 30   | 0.22 | BA | P3   |     |
| 10        | 21:46:58.66 | 47 20.56 | 123 03.01 | 46.15   | 2.3 | 58/60  | 35   | 0.25 | BA | P3   |     |
| 12        | 20:38:21.77 | 45 18.31 | 121 43.53 | 2.71    | 2.0 | 23/25  | 59   | 0.24 | BB | 00   |     |
| 12        | 21:26:43.19 | 45 18.22 | 121 43.53 | 4.52    | 2.3 | 29/30  | 51   | 0.21 | BB | 00   |     |
| 14        | 10:52:14.17 | 45 18.18 | 121 43.67 | 5.14    | 2.1 | 18/21  | 91   | 0.22 | BB | 00   |     |
| 14        | 11:22:57.98 | 45 18.43 | 121 43.84 | 5.16    | 2.9 | 35/35  | 70   | 0.28 | BA | 00   |     |
| 15        | 12:21:09.64 | 45 18.34 | 121 43.75 | 4.25    | 2.5 | 21/23  | 90   | 0.28 | BB | 00   |     |
| 15        | 19:51:03.95 | 47 42.58 | 120 04.49 | 2.92*   | 2.5 | 17/18  | 55   | 0.12 | AB | N3   |     |
| 21        | 11:59:04.70 | 46 50.69 | 120 41.60 | 15.97   | 2.3 | 28/33  | 58   | 0.18 | BA | E3   |     |
| 21        | 18:54:38.00 | 48 16.36 | 122 12.72 | 6.98\$  | 2.1 | 25/29  | 50   | 0.23 | BC | P3   |     |
| 27        | 19:28:16.13 | 48 10.97 | 117 52.13 | 1.91    | 2.0 | 8/09   | 179  | 0.21 | BC | N3   | -   |
| 28        | 18:34:53.83 | 47 41.01 | 117 23.36 | 1.78*   | 2.8 | 6/06   | 148  | 0.20 | BC | N3   | F   |
| - 28      | 18:38:37.73 | 47 40.65 | 117 24.49 | 0.58    | 2.6 | 6/07   | 135  | 0.37 | CC | N3   | F   |

# QUARTERLY NETWORK REPORT 2001-D

# on Seismicity of Washington and Oregon

October 1 through December 31, 2001

Pacific Northwest Seismograph Network Dept. of Earth and Space Sciences Box 351310 University of Washington Seattle, Washington 98195-1310

This report is prepared as a preliminary description of the seismic activity in Washington State and Oregon. Information contained in this report should be considered preliminary, and not cited for publication without checking directly with network staff. The views and conclusions contained in this document should not be interpreted as necessarily representing the official policies, either express or implied, of the U.S. Government.

Seismograph network operation in Washington and Oregon is supported by the following contracts:

U.S. Geological Survey Joint Operating Agreement 01-HQ-AG-0011

and

Pacific Northwest National Laboratory, operated by Battelle for the U.S. Dept. of Energy Contract 259116-A-B3

# CONTENTS

| Introduction                                         | 2  |
|------------------------------------------------------|----|
| Introduction<br>Network Operations                   | 2  |
| Strong Motion Instrument Update                      |    |
| CREST Instrument Update                              | 2  |
| Temporary Spokane stations                           |    |
| Other station news                                   | 7  |
| Data recording and EARTHWORM update                  |    |
| Stations used for locations                          |    |
| Outreach Activities                                  | 10 |
| Earthquake Data                                      | 13 |
| Oregon Seismicity                                    |    |
| Western Washington Seismicity                        |    |
| Cascade Volcanos                                     |    |
| Mount Rainier Area                                   | 20 |
| Mount St. Helens Area                                |    |
| Eastern Washington Seismicity                        | 20 |
| UPDATE - Spokane Earthquake Activity in 2001         | 21 |
| Further Information                                  |    |
| Key to Earthquake and Blast Catalog                  |    |
| Earthquake and Blast Catalog, Events M 2.0 or larger |    |

# **FIGURES**

| 1. | Map of seismometer stations operating in 2001 4th quarter                       | 3  |
|----|---------------------------------------------------------------------------------|----|
|    | . Map of Puget Sound area seismometer stations operating in 2001 4th quarter    |    |
|    | . Map of Mt. St. Helens area seismometer stations operating in 2001 4th quarter |    |
| 1D | . Map of Spokane area seismometer stations operating in 2001 4th quarter        | 6  |
| 2. | Map showing selected epicenters for 2001 4th quarter                            | 14 |
|    | Map showing blasts and probable blasts for 2001 4th quarter                     |    |
| 4. | Map showing Mt. Rainier epicenters for 2001 4th quarter                         | 16 |
| 5. | Map showing Mt. St. Helens epicenters for 2001 4th quarter                      | 16 |
| 6. | Map showing Spokane-area swarm earthquakes                                      | 17 |
|    | Event magnitudes and numbers/day for 2001 Spokane-area swarm earthquakes        |    |

# TABLES

| 1. Station outages, repairs, and installations for 4th quarter 2001 | 7 |
|---------------------------------------------------------------------|---|
| 2A. Short-period Stations operating at end of 4th quarter 2001      | 8 |
| 2B. Broad-band Stations operating at end of 4th quarter 2001        |   |
| 2C. Strong-motion Stations; operating at end of 4th quarter 2001    |   |
| 3A. Felt earthquakes                                                |   |
| 3B. Earthquakes M>=2.5. Focal mechanisms indicated, if computed     |   |
| 4. Catalog of earthquakes and blasts M>=2.0 for 4th quarter 2001    |   |

#### INTRODUCTION

This is the fourth quarterly report of 2001 from the University of Washington Dept. of Earth and Space Sciences *Pacific Northwest Seismograph Network* (PNSN), covering seismicity of Washington and western Oregon.

Comprehensive quarterlies have been produced by the PNSN since the beginning of 1984. Prior to that we published quarterly reports for western Washington in 1983 and for eastern Washington from 1975 to 1983. Annual technical reports covering seismicity in Washington since 1969 are available from the U.W. Dept. of Earth and Space Sciences. Beginning in 1999, the quarterly PNSN catalog listing changed; earthquakes smaller than magnitude 2.0 are no longer listed in the quarterly reports. The complete PNSN catalog is available on-line, both through our web-site and through the CNSS catalog. We will continue to provide special coverage (figures, counts, listings, etc.) of earthquake swarms, aftershock sequences, etc.

This quarterly report discusses network operations, seismicity of the region, unusual events or findings, and our educational and outreach activities. This report is preliminary, and subject to revision. The PNSN routinely records signals from selected stations in adjoining networks. This improves our ability to locate earthquakes at the edges of our network. However, our earthquake locations may be revised if new data become available. Findings mentioned in these quarterly reports should not be cited for publication.

## **NETWORK OPERATIONS**

Figure 1A shows a map view of stations operating during the quarter. Figure 1B is a more detailed view of stations in the Puget Sound area. Figure 1C is a more detailed view of stations near Mt. St. Helens. Figure 1D is a more detailed view of stations in the Spokane area. Table 1 gives approximate periods of time when individual stations were inoperable. Data for Table 1 are compiled from weekly plots of network-wide teleseismic arrivals and automated and manual digital and analog signal checks, plus records of maintenance and repair visits.

#### Strong Motion Instrumentation and Recording Update

After the PNSN strong-motion team completed the installation of twenty new ANSS strong-motion instruments in the greater Puget Sound Region during the summer and fall, this quarter's activities were more routine. A few stations are being repaired and other communication problems are being worked on. Improved education and outreach pages for the strong-motion web site involving schools and school teachers in the community are also being created.

#### **CREST Instrument Update**

CREST (Consolidated Reporting of EarthquakeS and Tsumamis) instrumentation was installed at Forks, Washington in October.

The Bonneville Power Administration (BPA) has provided telemetry for four CREST stations at BPA power substations near the coast (3 along the Oregon coast, and one in southwestern Washington). BPA completed site preparation work at these four sites by the end of September and all four stations were installed in October. We are receiving data for two of the sites, TAKO and TOLO, but not for the other two, MEGW and HEBO. Collaboration with the technicians and Reftek staff should get data flowing at the beginning of 2002.

#### **Temporary Spokane Stations**

Seismic activity continued in Spokane throughout the fourth quarter, and temporary instruments were once again installed. Amy Lindemuth, Tom Yelin, and Bob Norris installed two temporary strong-motion instruments in November. The first is SGAR, Garfield Elementary School, which was installed on November 15, 2001. The second is SWES, Westview Elementary School, which was installed on November 16, 2001. Three other strong-motion stations were installed and are operated by Pete Swanson at the National Institute of Occupational Safety and Health in Spokane. Those stations are SNIO, SHLY, and SOPS. We receive SOPS in real-time. Data from SNIO and SHLY has been emailed to us and merged in with data from the other Spokane stations.

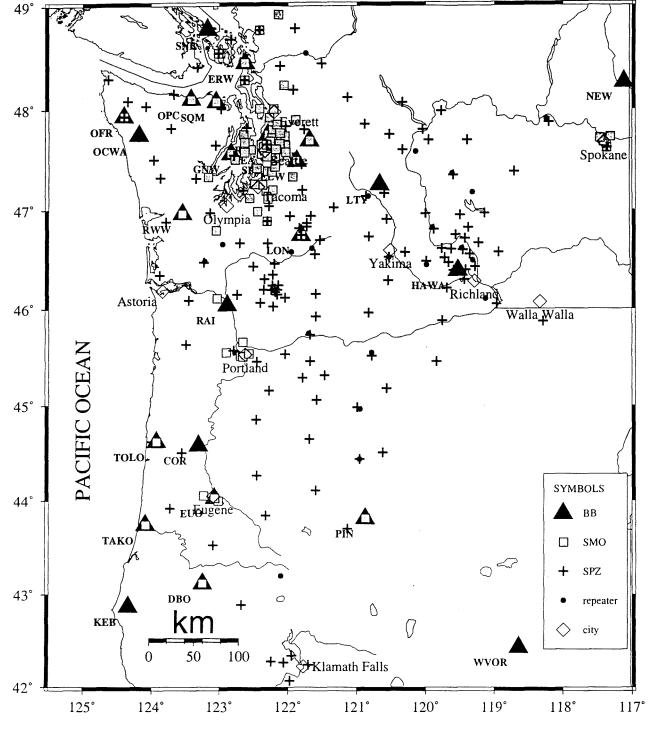



Figure 1A. Stations operating at the end of 4th quarter, 2001. Stations shown are short period vertical (SPZ), 3-component broadband (BB), or strong motion (SMO).

- 3 -

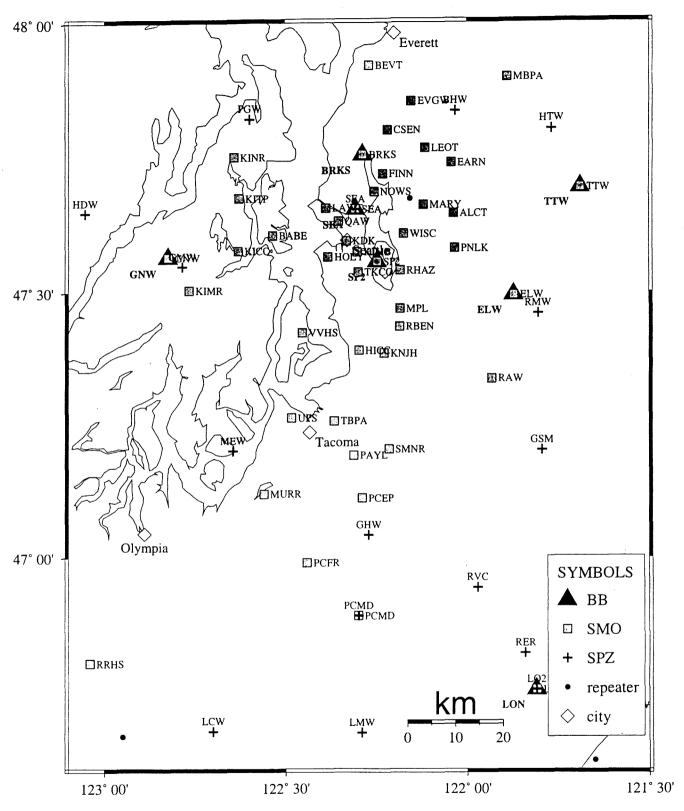



Figure 1B. Stations operating at the end of 4th quarter, 2001. Detail of Figure 1A.

- 4 -

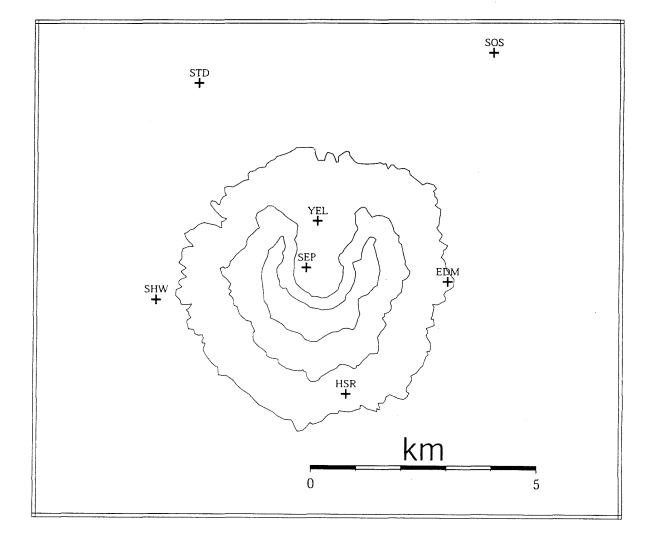
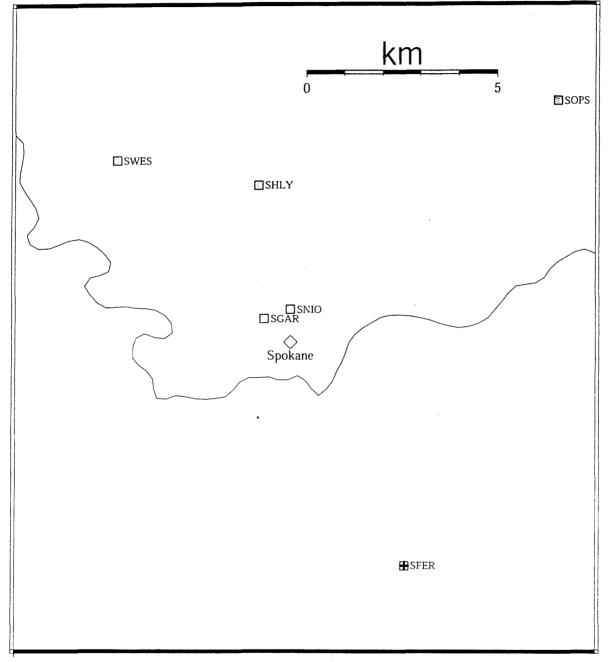




Figure 1C. Stations operating near Mt. St. Helens at the end of 4th quarter, 2001. Detail of Figure 1A. Station symbols as in Fig. 1A.



# 117 30'

Figure 1D. Stations operating near Spokane at the end of 4th quarter, 2001. Detail of Figure 1A. Stations SGAR, SFER, SWES, and SOPS are telemetered to the PNSN in real-time. Stations SNIO and SHLY are not telemetered, but are recorded on-site. Data retrieved from SNIO and SHLY are e-mailed to the PNSN and merged with the real-time data. Station symbols as in Fig. 1A.

- 6 -

#### **Other Station News**

In interesting station news, short period station NLO had its seismometer and VCO changed because of a chewed through seismometer cable! Short period station OHW, Oak Harbor, was removed because a short period component was added to the strong-motion station SVOH, Skagit Valley Community College in Oak Harbor. Strong motion station TBPA, Tacoma BPA, was removed for repair because of flood damage from heavy rainfall.

## Data Recording and EARTHWORM Update

This quarter, *scossa* remained our main EARTHWORM computer, with *milli* serving as our primary backup and *verme* as the secondary backup. *Milli* and *verme* still serve as the principal computers for data acquisition for many of the digital stations. We are currently running EARTHWORM-V5.1.

This quarter we completed the wiring for *pigia* our new Intel-based EARTHWORM digitizer running under Windows NT. The rewiring task was quite complex, but *pigia* is now digitizing data. *Pigia* will operate as an EARTHWORM node, exporting digitized data to *milli*. We are currently configuring the files that associate channel numbers with station and component names. Full integration of *pigia* into our data acquisition process is expected in the first quarter of 2002.

**TABLE 1** 

| Station Outages, Repairs, and Installations 4th quarter 2001 |                   |                                                                         |  |  |  |  |
|--------------------------------------------------------------|-------------------|-------------------------------------------------------------------------|--|--|--|--|
| Station                                                      | Outage Dates      | Comments                                                                |  |  |  |  |
| AUG                                                          | 12/19/01-End      | Noisy, not recording events                                             |  |  |  |  |
| BOW                                                          | 12/01/00-End      | Dead because air cells have run down                                    |  |  |  |  |
| BPO                                                          | 12/13/01-End      | Noisy, not recording events                                             |  |  |  |  |
| CDF                                                          | 12/13/01-End      | Dead                                                                    |  |  |  |  |
| EVCC                                                         | 9/27/01-10/9/01   | No power                                                                |  |  |  |  |
| EVCC                                                         | 11/13/01          | Removed to use in Spokane                                               |  |  |  |  |
| EVCC                                                         | 12/07/01          | Installed new K2                                                        |  |  |  |  |
| GLK                                                          | 12/19/01-End      | Noisy, not recording events                                             |  |  |  |  |
| GNW                                                          | 10/15/01-10/31/01 | Qwest replaced hardware                                                 |  |  |  |  |
| HDW                                                          | 12/08/01-End      | Dead                                                                    |  |  |  |  |
| HEBO                                                         | 10/01/01          | Installed, no telemetry (CREST BB/SMO)                                  |  |  |  |  |
| HOG                                                          | 10/11/01          | Replaced VCO                                                            |  |  |  |  |
| KDK                                                          | 9/27/01-11/30/01  | No GPS or telemetry                                                     |  |  |  |  |
| KICC                                                         | 8/30/01-12/4/01   | No GPS or telemetry                                                     |  |  |  |  |
| KITP                                                         | 12/03/01-End      | Removed for repair                                                      |  |  |  |  |
| KNJH                                                         | 7/9/01-End        | Intermittent telemetry                                                  |  |  |  |  |
| LCW                                                          | 12/12/01-End      | Dead                                                                    |  |  |  |  |
| MARY                                                         | 5/10/01-End       | No GPS                                                                  |  |  |  |  |
| MEGW                                                         | 10/21/01          | Installed, no telemetry (CREST BB/SMO)                                  |  |  |  |  |
| MURR                                                         | 10/23/01          | Removed short period                                                    |  |  |  |  |
| NCO                                                          | 11/07/01-End      | Noisy, not recording events                                             |  |  |  |  |
| NLO                                                          | 12/1/00-10/01/01  | Seismometer and VCO changed (seismometer cable had been chewed through) |  |  |  |  |
| OCP                                                          | 7/01-End          | Dead                                                                    |  |  |  |  |
| OFR                                                          | 10/18/01          | Installed (SMO)                                                         |  |  |  |  |
| OFR                                                          | 10/18/01-End      | Bad timing (no GPS)                                                     |  |  |  |  |
| OHW                                                          | 11/08/01          | Removed (replaced by SVOH)                                              |  |  |  |  |
| OOW                                                          | 12/10/01-End      | Dead                                                                    |  |  |  |  |
| OSD                                                          | 12/10/01-End      | Dead                                                                    |  |  |  |  |
| RCM                                                          | 8/20/01-End       | Seismically dead                                                        |  |  |  |  |
| RCS                                                          | 10/11/01-12/21/01 | Seismically dead (still intermittent)                                   |  |  |  |  |
| RER                                                          | 12/01/01-12/20/01 | Offline possibly due to weather                                         |  |  |  |  |
| RRHS                                                         | 6/20/01-11/13/01  | Intermittent telemetry                                                  |  |  |  |  |
| RRHS.EHZ                                                     | 11/13/01-End      | No telemetry                                                            |  |  |  |  |
| RVC                                                          | 12/01/01-12/20/01 | Offline possibly due to weather                                         |  |  |  |  |
| RVN                                                          | 12/04/01-12/18/01 | Offline possibly due to weather                                         |  |  |  |  |
| SFER                                                         | 08/09/01-11/16/01 | Replaced cable on the short period                                      |  |  |  |  |
| SGAR                                                         | 11/15/01          | Installed (temporary SMO)                                               |  |  |  |  |
| SHLY                                                         | 11/16/01          | Installed (Pete Swanson SMO)                                            |  |  |  |  |
| SLF                                                          | 11/20/01-End      | Dead for winter                                                         |  |  |  |  |
| SNIO                                                         | 11/16/01          | Installed (Pete Swanson SMO)                                            |  |  |  |  |
| SOPS                                                         | 11/15/01          | Installed (Pete Swanson SMO)                                            |  |  |  |  |
| SSO                                                          | 9/00-10/10/01     | Seismometer and VCO changed                                             |  |  |  |  |
| SVOH                                                         | 11/20/01          | Installed L4                                                            |  |  |  |  |
| SWES                                                         | 11/16/01          | Installed (temporary SMO)                                               |  |  |  |  |
| TAKO                                                         | 10/24/01          | Installed (CREST BB/SMO)                                                |  |  |  |  |
| TBPA                                                         | 11/27/01-End      | Removed for repair (flood damage)                                       |  |  |  |  |
| TOLO                                                         | 10/23/01          | Installed (CREST BB/SMO)                                                |  |  |  |  |
| VFP                                                          | 12/23/01-End      | Dead                                                                    |  |  |  |  |
| WPW                                                          | 5/15/01-End       | Dead                                                                    |  |  |  |  |
| WRW                                                          | 11/20/01-End      | Dead for winter                                                         |  |  |  |  |
|                                                              | 102001 200        | Dead for white                                                          |  |  |  |  |

# STATIONS USED FOR LOCATION OF EVENTS

Table 2A lists short-period, mostly vertical-component stations used in locating seismic events in Washington and Oregon. The first column in the table gives the 3-letter station designator, followed by a symbol designating the funding agency; stations marked by a percent sign (%) were supported by USGS joint operating agreement 01-HQ-AG-0011. A plus (+) indicates support under Pacific Northwest National Laboratory, Battelle contract 259116-A-B3. Stations designated "#" are USGS-maintained stations recorded at the PNSN. Stations designated by letters are operated by other networks, and telemetered to the PNSN. "M" stations are received from the Montana Bureau of Mines and Geology, "C" stations from the Canadian Pacific Geoscience Center, "U" stations from the US Geological Survey (usually USNSN stations), "N" stations from the USGS Northern California Network, and "H" stations from the Hanford Reservation via the Pacific Northwest National Labs. Other designation indicate support from other sources. Additional columns give station north latitude and west longitude (in degrees, minutes and seconds), station elevation in km, and comments indicating landmarks for which stations were named.

Table 2B lists broad-band stations used in locating seismic events in Washington and Oregon, and Table 2C lists strong-motion stations.

| TABLE 2A    | - Short | -period Stations         | operated by                                                                             | the PNSN         | during the fourth quarter 2001                   |
|-------------|---------|--------------------------|-----------------------------------------------------------------------------------------|------------------|--------------------------------------------------|
| STA         | F       | LAT                      | LONG                                                                                    | EL               | NAME                                             |
| ASR<br>AUG  | %<br>%  | 46 09 09.9<br>45 44 10.0 | 121 36 01.6<br>121 40 50.0                                                              | 1.357<br>0.865   | Mt. Adams - Stagman Ridge<br>Augspurger Mtn      |
| BBO<br>BEN  | %<br>1  | 42 53 12.6<br>46 31 12.0 | 122 40 46.6<br>119 43 18.0                                                              | 1.671<br>0.335   | Butler Butte, Oregon<br>W PNNL station           |
| BHW         | %       | 47 50 12.6               | 119 43 18.0<br>122 01 55.8                                                              | 0.198            | Bald Hill                                        |
| BLN<br>BOW  | %<br>%  | 48 00 26.5<br>46 28 30.0 | 122 58 18.6<br>123 13 41.0                                                              | 0.585<br>0.870   | Blyn Mt.<br>Boistfort Mt.                        |
| BPO         | %       | 44 39 06.9               | 121 41 19.2                                                                             | 1.957            | Bald Peter, Oregon                               |
| BRO<br>BRV  | %<br>+  | 44 16 02.5<br>46 29 07.2 | 122 27 07.1<br>119 59 28.2                                                              | 0.135<br>0.920   | Big Rock Lookout, Oregon<br>Black Rock Valley    |
| BSMT        | M       | 47 51 04.8               | 114 47 13.2                                                                             | 1.950            | Bassoo Peak, MT                                  |
| BUO<br>BVW  | %<br>+  | 42 16 42.5<br>46 48 39.5 | 122 14 43.1<br>119 52 56.4                                                              | 1.797<br>0.670   | Burton Butte, Oregon<br>Beverly                  |
| CBS         | +       | 47 48 17.4               | 120 02 30.0                                                                             | 1.067            | Chelan Butte, South                              |
| CDF<br>CHMT | %<br>M  | 46 07 01.4<br>46 54 51.0 | 122 02 42.1<br>113 15 07.0                                                              | 0.756            | Cedar Flats<br>Chamberlain Mtn. MT               |
| CMM         | %       | 46 26 07.0               | 122 30 21.0                                                                             | 0.620            | Crazy Man Mt.                                    |
| CMW<br>CPW  | %<br>%  | 48 25 25.3<br>46 58 25.8 | 122 07 08.4<br>123 08 10.8                                                              | 1.190<br>0.792   | Cultus Mtns.<br>Capitol Peak                     |
| CRF         | 10      | 46 49 30.0               | 119 23 13.2                                                                             | 0.189            | Corfu                                            |
| DPW<br>DY2  | +<br>+  | 47 52 14.3<br>47 59 06.6 | 118 12 10.2<br>119 46 16.8                                                              | 0.892<br>0.890   | Davenport<br>Dyer Hill 2                         |
| EDM         | %       | 46 11 50.4               | 122 09 00.0<br>122 20 27.0                                                              | 1.609            | East Dome, Mt. St. Helens                        |
| ELK<br>ELL  | %<br>+  | 46 18 20.0<br>46 54 34.8 | 122 20 27.0<br>120 33 58.8                                                              | $1.270 \\ 0.789$ | Elk Rock                                         |
| EPH         | +       | 47 21 22.8               | 119 35 45.6                                                                             | 0.661            | Ellensburg<br>Ephrata                            |
| ET3<br>ETW  | +<br>+  | 46 34 38.4<br>47 36 15.6 | 118 56 15.0<br>120 19 56.4                                                              | 0.286<br>1.477   | Eltopia (replaces ET2)                           |
| FHE         | +       | 46 57 06.9               | 119 29 49 0                                                                             | 0.455            | Entiat<br>Frenchman Hills East                   |
| FL2<br>FMW  | %<br>%  | 46 11 47.0<br>46 56 29.6 | 122 21 01.0<br>121 40 11.3                                                              | 1.378            | Flat Top 2                                       |
| GBB         | H<br>H  | 46 36 29.6               | 119 37 40.2                                                                             | 1.859<br>0.185   | Mt. Fremont<br>PNNL Station                      |
| GBL         | +<br>%  | 46 35 54.0               | 119 27 35 4                                                                             | 0.330            | Gable Mountain                                   |
| GHW<br>GL2  | %<br>+  | 47 02 30.0<br>45 57 35.0 | 122 16 21.0<br>120 49 22.5                                                              | 0.268<br>1.000   | Garrison Hill<br>New Goldendale                  |
| GLK         | %       | 46 33 27.6               | 121 36 34.3                                                                             | 1.305            | Glacier Lake                                     |
| GMO<br>GMW  | %<br>%  | 44 26 20.8<br>47 32 52.5 | 120 57 22.3<br>122 47 10.8                                                              | 1.689<br>0.506   | Grizzly Mountain, Oregon<br>Gold Mt.             |
| GPW         | %       | 48 07 05.0               | 121 08 12.0                                                                             | 2.354            | Glacier Peak                                     |
| GSM<br>GUL  | %<br>%  | 47 12 11.4<br>45 55 27.0 | 121 47 40.2<br>121 35 44.0                                                              | 1.305<br>1.189   | Grass Mt.<br>Guler Mt.                           |
| H2O         | н       | 46 23 45.0               | 119 25 22.0                                                                             | -                | Water PNNL Station                               |
| HAM<br>HBO  | %<br>%  | 42 04 08.3<br>43 50 39.5 | 121 58 16.0<br>122 19 11.9                                                              | 1.999<br>1.615   | Hamaker Mt., Oregon<br>Huckleberry Mt., Oregon   |
| HDW         | %       | 47 38 54.6               | 123 03 15.2                                                                             | 1.006            | Hoodsport                                        |
| HOG<br>HSO  | %<br>%  | 42 14 32.7<br>43 31 33.0 | 121 42 20.5<br>123 05 24.0                                                              | 1.887<br>1.020   | Hogback Mtn., Oregon<br>Harness Mountain, Oregon |
| HSR         | %       | 46 10 28.0               | 122 10 46.0<br>121 46 03.5                                                              | 1.720            | South Ridge, Mt. St. Helens                      |
| HTW<br>HUO  | %<br>%  | 47 48 14.2<br>44 07 10.9 | 121 46 03.5<br>121 50 53.5                                                              | 0.833<br>2.037   | Haystack Lookout                                 |
| JBO         | +       | 45 27 41.7               | 119 50 13.3                                                                             | 0.645            | Husband OR (UO)<br>Jordan Butte, Oregon          |
| JCW<br>JUN  | %<br>%  | 48 11 42.7<br>46 08 50.0 | 121 55 31.1<br>122 09 04.4                                                              | 0.792            | Jim Creek                                        |
| KMO         | %       | 45 38 07.8               | 123 29 22.2                                                                             | 1.049<br>0.975   | June Lake<br>Kings Mt., Oregon                   |
| KOS<br>KTR  | % ·     | 46 27 46.7<br>41 54 31.2 | $\begin{array}{c} 122 & \overline{11} & 4\overline{1.3} \\ 123 & 22 & 35.4 \end{array}$ | 0.610            | Kosmos                                           |
| LAB         | N<br>%  | 41 54 51.2<br>42 16 03.3 | 122 03 48.7                                                                             | 1.378<br>1.774   | CAL-NET<br>Little Aspen Butte, Oregon            |
| LAM<br>LCCM | N       | 41 36 35.2               | 122 37 32.1<br>111 52 40.8                                                              | 1.769            | CAL-NET                                          |
| LCCM        | M<br>%  | 45 50 16.8<br>46 40 14.4 | 122 42 02.8                                                                             | 1.669<br>0.396   | Lewis and Clark Caverns, MT<br>Lucas Creek       |
| LMW         | %       | 46 40 04.8               | 122 17 28.8                                                                             | 1.195            | Ladd Mt.                                         |

|             |                                         | 15 57 10 4               | 118 17 06.6                | 0.771          | Lincton Mt., Oregon                                     |
|-------------|-----------------------------------------|--------------------------|----------------------------|----------------|---------------------------------------------------------|
| LNO<br>LO2  | + %                                     | 45 52 18.6<br>46 45 00.0 | 121 48 36.0                | 0.853          | Longmire                                                |
| LOŹ         | +                                       | 46 43 01.2               | 119 25 51.0                | 0.210          | Locke Island                                            |
| LVP         | %                                       | 46 03 59.4               | 122 24 10.2                | 1.134          | Lakeview Peak                                           |
| MBW         | %                                       | 48 47 02.4               | 121 53 58.8<br>112 50 55.8 | 1.676<br>2.323 | Mt. Baker<br>McKenzie Canyon, MT                        |
| MCMT        | M<br>%                                  | 44 49 39.6<br>48 40 46.8 | 122 49 56.4                | 0.693          | Mt. Constitution                                        |
| MCW<br>MDW  | +                                       | 46 36 47.4               | 119 45 39.6                | 0.330          | Midway                                                  |
| MEW         | %                                       | 47 12 07.0               | 122 38 45.0                | 0.097          | McNeil Island                                           |
| MJ2         | +                                       | 46 33 27.0               | 119 21 32.4                | 0.146          | May Junction 2                                          |
| MOX         | + %                                     | 46 34 38.4<br>44 30 17.4 | 120 17 53.4<br>123 33 00.6 | 0.501<br>1.249 | Moxie City<br>Mary's Peak, Oregon                       |
| MPO<br>MTM  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | 46 01 31.8               | 122 12 42.0                | 1.121          | Mt. Mitchell                                            |
| NAC         | +                                       | 46 43 59.4               | 120 49 25.2                | 0.728          | Naches                                                  |
| NCO         | %                                       | 43 42 14.4               | 121 08 18.0                | 1.908          | Newberry Crater, Oregon                                 |
| NEL         | + %                                     | 48 04 12.6<br>46 05 21.9 | 120 20 24.6<br>123 27 01.8 | 1.500<br>0.826 | Nelson Butte<br>Nicolai Mt., Oregon                     |
| NLO<br>OBC  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | 48 02 07.1               | 124 04 39.0                | 0.938          | Olympics - Bonidu Creek                                 |
| ŎĔĦ         | %                                       | 47 19 34.5               | 123 51 57.0                | 0.383          | Olympics - Burnt Hill                                   |
| OCP         | %                                       | 48 17 53.5               | 124 37 30.0                | 0.487          | Olympics - Cheeka Peak                                  |
| OD2<br>OFR  | + %                                     | 47 23 15.6<br>47 56 00.0 | 118 42 34.8<br>124 23 41.0 | 0.553<br>0.152 | Odessa site 2<br>Olympics - Forest Resource Cen         |
| OHW         | %                                       | 48 19 24.0               | 122 31 54.6                | 0.054          | Oak Harbor                                              |
| ÖN2         | %                                       | 46 52 50.8               | 123 46 51.8                | 0.257          | Olympics - North River                                  |
| OOW         | %                                       | 47 44 03.6               | 124 11 10.2                | 0.561          | Octopus West                                            |
| OSD         | %<br>%                                  | 47 48 59.2<br>47 30 20.3 | 123 42 13.7<br>123 57 42.0 | 2.008<br>0.815 | Olympics - Snow Dome<br>Olympics Salmon Ridge           |
| OSR<br>OT3  | +                                       | 46 40 08.4               | 119 13 58.8                | 0.322          | New Othello (replaces OT2 8/26                          |
| ŎŤŔ         | %                                       | 48 05 00.0               | 124 20 39.0                | 0.712          | Olympics - Tyee Ridge                                   |
| PAT         | +                                       | 45 52 55.2               | 119 45 08.4                | 0.262          | Paterson<br>PC Mountain Detachment ANSS-SM              |
| PCMD        | %<br>%                                  | 46 53 20.9<br>45 27 42.6 | 122 18 00.9<br>122 27 11.5 | 0.239<br>0.253 | Gresham, Oregon                                         |
| PGO<br>PGW  | %                                       | 47 49 18.8               | 122 35 57.7                | 0.122          | Port Gamble                                             |
| PRO         | +                                       | 46 12 45.6               | 119 41 08.4                | 0.553          | Prosser                                                 |
| RCM         | %                                       | 46 50 08.9               | 121 43 54.4                | 3.085          | Mt. Rainier, Camp Muir                                  |
| RCS         | %<br>H                                  | 46 52 15.6<br>46 17 51.0 | 121 43 52.0<br>119 26 15.6 | 2.877<br>0.330 | Mt. Rainier, Camp Schurman<br>Red Mountain PNNL Station |
| RED<br>RER  | <b>%</b>                                | 46 49 09.2               | 121 50 27.3                | 1.756          | Mt. Rainier, Emerald Ridge                              |
| RMW         | %                                       | 47 27 35.0               | 121 48 19.2                | 1.024          | Rattlesnake Mt. (West)                                  |
| RNO         | %                                       | 43 54 58.9               | 123 43 25.5                | 0.850          | Roman Nose, Oregon                                      |
| RPW         | %<br>%                                  | 48 26 54.0<br>46 47 58.6 | 121 30 49.0<br>123 02 25.4 | 0.850<br>0.047 | Rockport<br>Rochester HS ANSS-SMO                       |
| RRHS<br>RSW | *<br>*                                  | 46 23 40.2               | 119 35 28.8                | 1.045          | Rattlesnake Mt. (East)                                  |
| RVC         | %                                       | 46 56 34.5<br>47 01 38.6 | 121 58 17.3                | 1.000          | Mt. Rainier - Voight Creek                              |
| RVN         | %                                       | 47 01 38.6               | 121 20 11.9                | 1.885          | Raven Roost (former NEHRP temp                          |
| RVW         | %                                       | 46 08 53.2<br>47 42 06.0 | 122 44 32.1<br>119 24 01.8 | 0.460<br>0.701 | Rose Valley<br>St. Andrews                              |
| SAW<br>SBES | + %                                     | 48 46 05.9               | 122 24 54.2                | 0.119          | Silver Beach ES SMO                                     |
| SEA         | ~                                       | 47 39 15.8               | 122 18 29.3                | 0.030          | UW, Seattle (Wood Anderson BB                           |
| SEP         | #                                       | 46 12 00.7               | 122 11 28.1                | 2.116          | September lobe, Mt. St. Helens                          |
| SFER        | %<br>%                                  | 47 37 10.4<br>46 11 37.1 | 117 21 55.7<br>122 14 06.5 | 1.425          | Spokane Schools, Ferris High S<br>Mt. St. Helens        |
| SHW<br>SLF  | %<br>%                                  | 47 45 32.0               | 120 31 40.0                | 1.750          | Sugar Loaf                                              |
| SMW         | %                                       | 47 19 10.7               | 123 20 35.4                | 0.877          | South Mtn.                                              |
| SNI         | Н                                       | 46 27 80.0               | 119 39 50.0                | 1 270          | PNNL station                                            |
| SOS<br>SSO  | %<br>%                                  | 46 14 38.5<br>44 51 21.6 | 122 08 12.0<br>122 27 37.8 | 1.270<br>1.242 | Source of Smith Creek<br>Sweet Springs, Oregon          |
| STD         | <i>п</i> .<br>%                         | 46 14 16.0               | 122 13 21.9                | 1.268          | Studebaker Ridge                                        |
| STW         | %                                       | 48 09 03.1               | 123 40 11.1<br>122 37 54.8 | 0.308          | Striped Peak                                            |
| SVOH        | %                                       | 48 17 21.8               | 122 37 54.8                | 0.010          | Skagit Valley CC ANSS-SMO                               |
| TBM         | +<br>%                                  | 47 10 12.0<br>44 06 27.6 | 120 35 52.8                | 1.006<br>1.975 | Table Mt.<br>Three Creek Meadows, Oregon.               |
| TCO<br>TDH  | %                                       | 45 17 23.4               | 121 36 02.1<br>121 47 25.2 | 1.541          | Tom.Dick.Harry Mt., Oregon                              |
| TDL         | %                                       | 46 21 03.0               | 122 12 57.0                | 1.400          | Tradedollar Lake                                        |
| TRW         | +                                       | 46 17 32.0<br>47 08 17.4 | 120 32 31.0<br>120 52 06.0 | 0.723<br>1.027 | Toppenish Ridge                                         |
| TWW<br>UWFH | +<br>%                                  | 47 08 17.4<br>48 32 46.0 | 120 52 08.0                | 0.010          | Teanaway<br>UW Friday Harbor ANSS-SMO                   |
| VBE         | n<br>K                                  | 45 03 37.2               | 121 35 12.6<br>120 59 17.4 | 1.544          | Beaver Butte, Oregon                                    |
| VCR         | %<br>%<br>C                             | 45 03 37.2<br>44 58 58.2 | 120 59 17.4                | 1.015          | Criterion Ridge, Oregon                                 |
| VDB         | C                                       | 49 01 34.0               | 122 06 10.1                | 0.404          | Canada<br>Flag Point Oragon                             |
| VFP<br>VG2  | %<br>%                                  | 45 19 05.0<br>45 09 20.0 | 121 27 54.3<br>122 16 15.0 | 1.716<br>0.823 | Flag Point, Oregon<br>Goat Mt., Oregon                  |
| VGB         | +                                       | 45 30 56.4               | 120 46 39.0                | 0.729          | Gordon Butte, Oregon                                    |
| VGZ         | Ċ<br>%<br>%                             | 48 24 50.0               | 123 19 27.8<br>120 37 07.8 | 0.067          | Canada                                                  |
| VIP         | %<br>(1)                                | 44 30 29.4               | 120 37 07.8                | 1.731          | Ingram Pt., Oregon                                      |
| VLL<br>VLM  | %<br>%                                  | 45 27 48.0<br>45 32 18.6 | 121 40 45.0<br>122 02 21.0 | 1.195<br>1.150 | Laurance Lk., Oregon<br>Little Larch, Oregon            |
| VSP         | %                                       | 42 20 30.0               | 121 57 00.0                | 1.539          | Spence Mtn, Oregon                                      |
| VT2         | +                                       | 46 58 02.4               | 119 59 57.0<br>120 33 40.8 | 1.270          | Vantage2                                                |
| VTH         | %                                       | 45 10 52.2               | 120 33 40.8                | 0.773          | The Trough, Oregon<br>Wahluka Slope                     |
| WA2<br>WAT  | +++++++++++++++++++++++++++++++++++++++ | 46 45 19.2<br>47 41 55.2 | 119 33 56.4<br>119 57 14 4 | 0.244<br>0.821 | Wahluke Slope<br>Waterville                             |
| WIB         | *                                       | 46 20 34.8               | 119 57 14.4<br>123 52 30.6 | 0.503          | Willapa Bay                                             |
| WIW         | +                                       | 46 25 45.6               | 1191/15.6                  | 0.128          | Wooded Island                                           |
| WPO         | %                                       | 45 34 24.0               | 122 47 22.4                | 0.334          | West Portland, Oregon                                   |
| WPW<br>WRD  | %<br>+                                  | 46 41 55.7<br>46 58 12.0 | 121 32 10.1<br>119 08 41.4 | 1.280<br>0.375 | White Pass<br>Warden                                    |
| WRW         | *                                       | 47 51 26.0               | 120 52 52.0                | 1.189          | Wenatchee Ridge                                         |
| YA2         | +                                       | 46 31 36.0               | 120 31 48.0                | 0.652          | Yakima                                                  |
| YEL         | #                                       | 46 12 35.0<br>46 02 55.8 | 122 11 16.0<br>118 57 44.0 | 1.750<br>0.325 | Yellow Rock, Mt. St. Helens                             |
| YPT         | +                                       | 0.66 20 07               | 0.144.0                    | 0.243          | Yellepit                                                |

- 9 -

| TABLE 2B    |                 |                          |                            |                |                                              |  |  |  |  |  |  |
|-------------|-----------------|--------------------------|----------------------------|----------------|----------------------------------------------|--|--|--|--|--|--|
| Broad-band  | three-component | stations operating       | at the end of the four     | th quarter 20  | 001. Symbols are as in Table 2A.             |  |  |  |  |  |  |
| STA         | F               | LAT                      | LONG                       | EL             | NAME                                         |  |  |  |  |  |  |
| BRKS        | %               | 47 45 19.1               | 122 17 17.9                | 0.020          | Brookside ANSS-SMO                           |  |  |  |  |  |  |
| COR         | U               | 44 35 08.5               | 123 18 11.5                | 0.121          | Corvallis, Oregon (OSU BB)                   |  |  |  |  |  |  |
| DBO         | %               | 43 07 09.0               | 123 14 34.0                | 0.984          | Dodson Butte, Oregon (UO CREST               |  |  |  |  |  |  |
| ELW         | %               | 47 29 39.4               | 121 52 17.2                | 0.267          | EchoLakeBPA BB-SMO-IDS20                     |  |  |  |  |  |  |
| ERW         | %<br>%<br>%     | 48 27 14.4               | 122 37 30.2                | 0.389          | Mt. Erie SMO-IDS24 BB                        |  |  |  |  |  |  |
| EUO         | %               | 44 01 45.7               | 123 04 08.2                | 0.160          | Eugene, OR U0 CREST BB SMO                   |  |  |  |  |  |  |
| GNW         | %               | 47 33 51.8               | 122 49 31.0                | 0.165          | Green Mt CREST BB SMO                        |  |  |  |  |  |  |
| HAWA        | U               | 46 23 32.3               | 119 31 57.2                | 0.367          | Hanford Nike USNSN BB                        |  |  |  |  |  |  |
| HLID        | U               | 43 33 45.0               | 114 24 49.3                | 1.772          | Hailey, ID USNSN BB                          |  |  |  |  |  |  |
| KSXB        | N               | 41 49 51.0               | 123 52 33.0                | 0.010          | Camp Six, OR CREST BB                        |  |  |  |  |  |  |
| KEB<br>KRMB | N<br>N          | 42 52 20.0<br>41 31 23.0 | 124 20 03.0<br>123 54 29.0 | 0.818          | Edson Butte, OR CREST BB                     |  |  |  |  |  |  |
|             | IN<br>67-       | 46 45 00.0               | 123 34 29.0                | 1.265<br>0.853 | Red Mtn, OR CREST BB                         |  |  |  |  |  |  |
| LON<br>LTY  | %<br>%          | 47 15 21.2               | 120 39 53.3                | 0.855          | Longmire CREST BB LONLZ SMO                  |  |  |  |  |  |  |
| NEW         | 70<br>U         | 48 15 50.0               | 120 39 33.3                | 0.760          | Liberty (BB)<br>Newport Observatory USNSN BB |  |  |  |  |  |  |
| OCWA        | Ŭ               | 47 44 56.0               | 124 10 41.2                | 0.671          | Octopus Mtn. USNSN BB                        |  |  |  |  |  |  |
| OFR         | %               | 47 56 00.0               | 124 23 41.0                | 0.152          | Olympics - Forest Resource Cen               |  |  |  |  |  |  |
| <b>ÖP</b> C | <i>%</i>        | 48 06 01.0               | 123 24 41.8                | 0.090          | Olympic Penn College CREST BB                |  |  |  |  |  |  |
| PIN         | %               | 43 48 40.0               | 120 52 19.0                | 1.865          | Pine Mt., Oregon (U0 CREST, B                |  |  |  |  |  |  |
| PNT         | Ĉ               | 49 18 57.6               | 119 36 57.6                | 0.550          | Canada, BB                                   |  |  |  |  |  |  |
| RAI         | 0               | 46 02 25.1               | 122 53 06.4                | 1.520          | Trojan Plant, Oregon (OSU BB)                |  |  |  |  |  |  |
| RWW         | %               | 46 57 53.7               | 123 32 31.7                | 0.015          | Ranney Well CREST BB SMO                     |  |  |  |  |  |  |
| SEA         | %               | 47 39 15.8               | 122 18 29.3                | 0.030          | UW, Seattle (Wood Anderson BB                |  |  |  |  |  |  |
| SNB         | С               | 48 46 33.6               | 123 10 16.3                | 0.408          | Canada BB                                    |  |  |  |  |  |  |
| SP2         | %               | 47 33 23.3               | 122 14 52.8                | 0.030          | Seward Park, Seattle SMO-IDS24               |  |  |  |  |  |  |
| SQM         | %               | 48 04 39.0               | 123 02 44.0                | 0.030          | Sequim, WA (CREST BB SMO)                    |  |  |  |  |  |  |
| TĂKO        | %               | 43 44 36.0               | 124 04 56.0                | 0.100          | Tahkenitch, OR CREST BB SMO                  |  |  |  |  |  |  |
| TOLO        | %               | 44 37 19.0               | 123 55 21.0                | 0.100          | Toledo BPA, OR CREST BB SMO                  |  |  |  |  |  |  |
| TTW         | %               | 47 41 40.7               | 121 41 20.0                | 0.542          | Tolt Res. WA CREST BB SMO                    |  |  |  |  |  |  |
| WVOR        | U               | 42 26 02.0               | 118 38 13.0                | 1.344          | Wildhorse Valley, Oregon (USNS               |  |  |  |  |  |  |
|             |                 |                          |                            |                |                                              |  |  |  |  |  |  |

#### **OUTREACH ACTIVITIES**

The PNSN Seismology Lab staff provides an educational outreach program to better inform the public, educators, businesses, policy makers, and the emergency management community about seismicity and natural hazards. Our outreach includes lab tours, lectures, classes and workshops, press conferences, TV and radio news programs and talk shows, field trips, and participation in regional earthquake planning efforts. We provide basic information through information sheets, an audio library, and the Internet on the World-Wide-Web (WWW):

#### http://www.ess.washington.edu/SEIS/PNSN

#### Telephone, Mail, and On-line outreach

The PNSN audio library system received about 325 calls this quarter. Our audio library provides several recordings. frequently updated message on current seismic activity. In addition we have a tape describing the seismic hazards in Washington and Oregon, and another on earthquake prediction. Callers often request our one-page information and resource sheet on seismic hazards in Washington and Oregon. Thousands of these have been mailed out or distributed, and we encourage others to reproduce and further distribute this sheet. Our information sheet discussing earthquake prediction is also frequently requested. Callers to the audio library can also choose to be transferred to the Seismology Lab, where additional information is available. This quarter we responded in person to: ~20 calls from emergency managers and government, ~50 calls from the media, ~15 calls from educators ~20 calls from the business community, and about 66 calls from the general public.

### Internet outreach

The PNSN web-site offers many web pages, including maps and lists of the most recent PNW earthquakes, general information on earthquakes and PNW earthquake hazards, information on past damaging PNW earthquakes, and catalogs of earthquake summary cards. Web-pages on seismicity of Cascade Volcanos, and Quarterly summaries of seismicity are also included. The PNSN recent earthquake list is available through the World-Wide-Web (WWW) at:

## http://www.ess.washington.edu/SEIS/PNSN

"Webicorder" pages show continuous data from PNSN seismographic stations:

## http://www.ess.washington.edu/SEIS/PNSN/WEBICORDER/

ShakeMap shows maps of instrumentally measured shaking. Table 3A indicates which events this quarter generated ShakeMaps.

Shake Maps: http://www.ess.washington.edu/shake/index.html

Table 2C, lists strong-motion, three-component stations operating in Washington and Oregon that provide data in real or near-real time to the PNSN. Several of these stations also have broad-band instruments, as noted. The SENSOR field designates what type of seismic sensor is used; • A = Terra-Tech SSA-320 SLN triaxial accelerometer/Terra-Tech IDS24

- A20 = Terra-Tech SSA-320 triaxial accelerometer/Terra-Tech IDS20 recording system,
  FBA23 = Kinemetrics FBA23 accelerometers and Reftek recording system.
- PBA25 = Kinemetrics PBA25 accelerometers and Reftek recording system
  EPI = Kinemetrics Episensor accelerometers and Reftek recording system.
  BB = Guralp CMG-40T 3-D broadband velocity sensor.
  BB3 = Guralp CMG3T 3-D broadband velocity sensor.
  BBZ = Broad Band sensor, PMD 2024, vertical component only.

- K2 = Kinemetrics Episensor accelerometers and K2 Recording System The "TELEMETRY" field indicates the type of telemetry used to recover the data.

• D = dial-up,

- E = continuously telemetered via Internet from a remote EARTHWORM system
- I = continuously telemetered via Internet,
  L = continuously telemetered via dedicated lease-line telephone lines,
- L-PPP = continuously telemetered via dedicated lease-line telephone lines using PPP protocol

TARLEN

- M = continuously telemetered via BPA microwave
- R = continuously telemetered via spread-spectrum radio

| _                           |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | TABLE 2C                                                                                                                                                                                                                                                                                                     |                                                                |                  |
|-----------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------|
| Strong-1                    | motion                                                                     | three-compor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nent stations o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | perating                                                    | TABLE 2C<br>at the end of the fourth quarter 2001<br>NAME                                                                                                                                                                                                                                                    | . Symbols are as                                               | s in Table 2A.   |
| STA                         | F                                                                          | LAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LONG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EL                                                          | NAME                                                                                                                                                                                                                                                                                                         | SENSORS                                                        | TELEMETRY        |
| ALCT<br>ALST<br>ALVY        | %<br>%                                                                     | 47 38 48.8<br>46 6 32.3<br>43 59 53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122 2 15.7<br>123 1 58.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.055<br>0.198<br>0.155                                     | Alcott Elementary<br>Alston                                                                                                                                                                                                                                                                                  | K2<br>A20<br>K2<br>K2<br>K2<br>K2<br>K2<br>K2                  | E.M              |
| ALVY                        | %                                                                          | 43 59 53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123 0 57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.155                                                       | Alvey                                                                                                                                                                                                                                                                                                        | K2                                                             | Ĕ.M              |
| ATES                        | %                                                                          | 48 14 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 3 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             | Tration Elementary<br>Blakely Elementary<br>Boeing Plant Everett<br>Brookside Elementary<br>Crystal Springs Elementary                                                                                                                                                                                       | K2                                                             | Į                |
| BABE                        | %<br>C                                                                     | 47 36 21.0<br>47 55 12.0<br>47 45 19.1<br>47 48 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122 32 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.010<br>0.170<br>0.020<br>0.055<br>0.036<br>0.984<br>0.159 | Blakely Elementary                                                                                                                                                                                                                                                                                           | K2<br>K2                                                       |                  |
| BEVT<br>BRKS<br>CSEN<br>CSO | 70<br>%                                                                    | 47 45 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 17 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.020                                                       | Brookside Elementary                                                                                                                                                                                                                                                                                         | KŽ.BBZ                                                         | 1                |
| CSEN                        | %                                                                          | 47 48 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 13 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.055                                                       | Crystal Springs Elementary                                                                                                                                                                                                                                                                                   | K2.BBZ<br>K2                                                   | Ī                |
| CSO                         | #                                                                          | 47 48 4.3<br>45 31 1.0<br>43 7 9.0<br>47 44 27.2<br>47 4 24.0<br>47 29 39.4<br>48 27 14.4<br>48 27 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 122 41 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.036                                                       | Canyon<br>Dodson Butte (CREST)<br>East Ridge Elementary<br>Evergreen State College<br>Echo Lake<br>Mount Erie                                                                                                                                                                                                | FBA23                                                          | D                |
| DBO<br>EARN                 | 90<br>C2                                                                   | 43 7 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123 14 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.984                                                       | Douson Butte (CKEST)<br>East Ridge Elementary                                                                                                                                                                                                                                                                | EPI,BB3                                                        | E.L-PPP          |
| EGRN                        | <sup>2</sup>                                                               | 47 4 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 58 41.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.010                                                       | Evergreen State College                                                                                                                                                                                                                                                                                      | K2<br>K2                                                       | None             |
| ELW<br>ERW                  | %                                                                          | 47 29 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121 52 17.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.267<br>0.389                                              | Echo Lake                                                                                                                                                                                                                                                                                                    | A.BB                                                           | D.M.L<br>D.L,M   |
| ERW                         | %<br>(%                                                                    | 48 27 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 37 30.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.389                                                       | Mount Erie                                                                                                                                                                                                                                                                                                   | A.BB                                                           | D.L.M            |
| EUO<br>EVCC                 | %<br>CL                                                                    | 44 1 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123 4 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.160                                                       | Eugene Golf Course (CREST)<br>Everett Community College<br>Gateway Middle School<br>Finn Hill Junior High                                                                                                                                                                                                    | EPI,BB                                                         | E.L-PPP<br>None  |
| ĔVĞŴ                        | ŝ                                                                          | 47 51 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 9 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>0.010                                              | Gateway Middle School                                                                                                                                                                                                                                                                                        | K2<br>K2<br>K2                                                 |                  |
| FINN                        | %                                                                          | 47 43 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 13 55.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.121<br>0.165<br>0.018                                     | Finn Hill Junior High                                                                                                                                                                                                                                                                                        | К2                                                             | 1                |
| GNW                         | %                                                                          | 47 33 51.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 49 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.165                                                       |                                                                                                                                                                                                                                                                                                              | EPI,BB3                                                        | L-PPP            |
| HAO                         | #<br>C2.                                                                   | 45 50 55.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 39 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.018                                                       | Harrison<br>Highline Community College<br>Holy Rosary School<br>King Dome<br>Keeler                                                                                                                                                                                                                          | FBA23                                                          | D                |
| HICC<br>HOLY                | %<br>%                                                                     | 47 33 55.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 23 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.106                                                       | Holy Rosary School                                                                                                                                                                                                                                                                                           | K2<br>K2                                                       | i                |
| KDK                         | K.                                                                         | 47 35 42.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 19 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.106<br>0.004                                              | King Dome                                                                                                                                                                                                                                                                                                    | K2                                                             | None             |
| KEEL<br>KICC                | %                                                                          | 45 33 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 53 42.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.067                                                       | Keeler                                                                                                                                                                                                                                                                                                       | A20                                                            | D.E.M            |
| KICC                        | 90<br>02                                                                   | 47 34 37.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 37 52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.010<br>0.069                                              |                                                                                                                                                                                                                                                                                                              | N 2<br>K 2                                                     | None             |
| KIMR                        | %                                                                          | 47 30 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 46 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.123                                                       | Kimball Elementary<br>Moderate Risk Waste Collection Facility                                                                                                                                                                                                                                                | K2                                                             | i                |
| KINR                        | <del>%</del>                                                               | 47 45 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 38 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.010                                                       |                                                                                                                                                                                                                                                                                                              | K2                                                             | Ī                |
| KITP                        | %                                                                          | 47 40 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 37 47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.076                                                       | Wastewater Treatment Plant<br>Kent Junior High                                                                                                                                                                                                                                                               | K2<br>K2<br>K2<br>K2<br>K2<br>K2<br>K2<br>K2<br>K2<br>K2<br>K2 | l                |
| KNJH<br>LANE                | %<br>C2                                                                    | 4/23 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122 13 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.010                                                       | Kent Junior High<br>Lane                                                                                                                                                                                                                                                                                     | K.2<br>K 2                                                     | None<br>E,M      |
| LAWT                        | Sk.                                                                        | 47 39 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 23 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.050                                                       | Lawton Elementary                                                                                                                                                                                                                                                                                            | A20                                                            | l                |
| LAWT<br>LEOT                | %                                                                          | 47 46 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 6 56.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.120<br>0.050<br>0.115                                     | Leota Junior High                                                                                                                                                                                                                                                                                            | A 20<br>K2                                                     | ī                |
| LON                         | %<br>~                                                                     | 46 45 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121 48 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.853<br>0.970                                              | Longmire Springs (CREST)                                                                                                                                                                                                                                                                                     | EPI,BB3                                                        | L-PPP            |
| LTY<br>MARY                 | G.                                                                         | 47 10 21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120 29 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.970                                                       | Marymoor Park                                                                                                                                                                                                                                                                                                | BB3                                                            | 1                |
| MBKE                        | Ĝ.                                                                         | 48 55 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 8 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.010                                                       | Leota Junior High<br>Longmire Springs (CREST)<br>Liberty Heights Mine (CREST)<br>Marymoor Park<br>Kendall Elementary                                                                                                                                                                                         | K2<br>K2                                                       | i                |
| MBPA                        | <b>%</b>                                                                   | 47 53 54.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121 53 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.186<br>0.122<br>0.100                                     | Nonce<br>Maple Valley<br>Camp Murray<br>NOAA Sand Point<br>Hood Canal Junior High<br>Pennsula College (CREST)<br>Aylen Junior High                                                                                                                                                                           | A20                                                            | D.M.L            |
| MPL                         | <i>%</i>                                                                   | 47 28 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 11 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.122                                                       | Maple Valley                                                                                                                                                                                                                                                                                                 | A                                                              | D.M.L            |
| MURR<br>NOWS                | ж<br>С                                                                     | 47 41 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 33 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.100                                                       | Camp Murray<br>NOAA Sand Point                                                                                                                                                                                                                                                                               | K2<br>A20                                                      | None             |
| OHC<br>OPC<br>PAYL<br>PCEP  | Ś.                                                                         | 47 20 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123 9 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002<br>0.010                                              | Hood Canal Junior High                                                                                                                                                                                                                                                                                       | K2                                                             | 1                |
| OPC                         | R.                                                                         | 48 6 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123 24 41.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.090                                                       | Peninsula College (CREST)                                                                                                                                                                                                                                                                                    | EPI.BB                                                         | i                |
| PAYL                        | <i>C</i> 2                                                                 | 47 11 34.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 18 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.010                                                       | Aylen Junior High                                                                                                                                                                                                                                                                                            | <u>K2</u>                                                      | 1                |
| PCEP<br>PCFR                | Cr Cr                                                                      | 4/ 0 41.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 17 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.160<br>0.137                                              | Avien Junior High<br>Puyallup East Sheriff Precinct<br>Roy Training Center<br>Mountain Detachment<br>Pine Mtn. (CREST)<br>Days Low Moth Colorad                                                                                                                                                              | K2<br>K2<br>K2<br>K2                                           | 1                |
| PCMD                        | x.                                                                         | 46 53 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 18 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.239<br>1.865<br>0.128                                     | Mountain Detachment                                                                                                                                                                                                                                                                                          | <b>K</b> 7                                                     | 1                |
| PIN                         | Sec.                                                                       | 43 48 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120 52 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.865                                                       | Pine Mtn. (CREST)                                                                                                                                                                                                                                                                                            | EPI,BB3                                                        | E.L-PPP          |
| PNLK                        | с,<br>С                                                                    | 47 34 54 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 2 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0128                                                        | Pine Lake Middle School                                                                                                                                                                                                                                                                                      | K2                                                             | ļ                |
| QAW<br>RAW                  | С,                                                                         | 4/ 5/ 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 21 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.140<br>0.208                                              | Queen Anne<br>Raver                                                                                                                                                                                                                                                                                          | A 20<br>A 20                                                   | L<br>M.L         |
| RBEN                        | ŵ                                                                          | 47 26 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 11 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.152                                                       | Benson Hill Elementary                                                                                                                                                                                                                                                                                       | K2                                                             | I I              |
| RBO                         | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ | $\begin{array}{c} 1421 \\ 457 \\ 48 \\ 0 \\ 277 \\ 47 \\ 51 \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10. \\ 10.$ | $\begin{array}{c} 1272 & 0 & 5770 \\ 1222 & 3 & 33.0 \\ 1222 & 32 & 7.0 \\ 1222 & 16 & 12.0 \\ 1222 & 16 & 12.0 \\ 1222 & 14 & 34.0 \\ 1222 & 14 & 34.0 \\ 1222 & 14 & 34.0 \\ 1222 & 14 & 34.0 \\ 1222 & 14 & 34.0 \\ 1222 & 14 & 34.0 \\ 1222 & 14 & 34.0 \\ 1222 & 13 & 55.9 \\ 1223 & 14 & 34.0 \\ 1222 & 13 & 55.9 \\ 1223 & 14 & 35.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1222 & 13 & 55.9 \\ 1221 & 15 & 53.2 \\ 1222 & 14 & 16.0 \\ 1222 & 15 & 53.2 \\ 1221 & 15 & 53.2 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11 & 15.0 \\ 1222 & 11$        | 0.152<br>0.158                                              | Benson Hill Elementary<br>Rocky Butte<br>Hazelwood Elementary                                                                                                                                                                                                                                                | FBA23                                                          | D                |
| RHAZ<br>ROSS                | 5 C                                                                        | 47 32 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 11 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.108                                                       | Hazelwood Elementary                                                                                                                                                                                                                                                                                         | A 20                                                           |                  |
| RRHS                        | -71<br>Ch                                                                  | 45 37 43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 84 23.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.061<br>0.047                                              | KOSS                                                                                                                                                                                                                                                                                                         | A 20<br>K 2                                                    | E                |
| RWW                         | ŝ.                                                                         | 46 57 53.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123 32 31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.015                                                       | Rochester High School<br>Ranney Well (CREST)                                                                                                                                                                                                                                                                 | ÉPI.BB3                                                        | L-PPP            |
| SBES                        | %                                                                          | 48 46 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 123 & 2 & 25.4 \\ 123 & 32 & 31.7 \\ 122 & 24 & 54.2 \\ 122 & 18 & 29.3 \\ 117 & 21 & 55.7 \\ 117 & 24 & 50.3 \\ 122 & 12 & 53.4 \\ 122 & 14 & 52.8 \\ 123 & 2 & 44.0 \\ 122 & 37 & 53.2 \\ 127 & 27 & 53.2 \\ 127 & 24 & 42.0 \\ 124 & 4 & 46.0 \\ 122 & 22 & 24 & 42.0 \\ 124 & 14 & 66.0 \\ 122 & 22 & 24 & 1.0 \\ 122 & 12 & 1.5 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 123 & 52 & 1.0 \\ 124 & 14 & 14 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 125 & 125 & 1.0 \\ 12$ | 0.119<br>0.030                                              |                                                                                                                                                                                                                                                                                                              | K2                                                             | 1                |
| SEA                         | 57<br>67                                                                   | 47 39 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 18 29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.030<br>0.000                                              | Silver Beach Elementary School<br>University of Washington<br>Ferris High School<br>Garheld Elementary<br>Sumner High School<br>Seward Park<br>Sequim Battelle Properties (CREST)<br>Skagit Valley College Oak Harbor<br>Westview Elementary<br>South Whidbey Primary School<br>Tahkenitch (CREST)<br>Tacoma | A20.PMD2023                                                    | L                |
| SFER<br>SGAR                | ж<br>С                                                                     | 47 37 10.4<br>47 40 37.8<br>47 12 16.6<br>47 33 23.3<br>48 4 39.0<br>48 17 21.8<br>47 42 51.0<br>48 0 31.0<br>48 0 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117 21 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000                                                       | Cartield Elementary                                                                                                                                                                                                                                                                                          | K2<br>K2<br>K2                                                 |                  |
| SMNR                        | ch.                                                                        | 47 12 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 12 53.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.010                                                       | Summer High School                                                                                                                                                                                                                                                                                           | <u> </u>                                                       | 1                |
| SP2                         | 5                                                                          | 47 33 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 14 52.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.010 0.030                                                 | Seward Park                                                                                                                                                                                                                                                                                                  | A.BB                                                           | Ĺ                |
| SOM<br>SVOH                 | St C.                                                                      | 48 4 39.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123 2 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.030                                                       | Sequim Battelle Properties (CREST)                                                                                                                                                                                                                                                                           | EPI.BB                                                         | I.R              |
| SWES                        | CZ.                                                                        | 40 1/ 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117 57 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.010                                                       | Skagn valley College Oak Harbor<br>Westview Elementary                                                                                                                                                                                                                                                       | K2<br>K2<br>K2                                                 | 1                |
| SWID                        | Ÿ.                                                                         | 48 0 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 24 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.623                                                       | South Whidbey Primary School                                                                                                                                                                                                                                                                                 | K2                                                             | i                |
| TAKO                        | 5                                                                          | 43 44 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124 4 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.100                                                       | Tahkenitch (CREST)                                                                                                                                                                                                                                                                                           | EPI.BB                                                         | Microwave,E      |
| ТВРА<br>ТКСО                | Уř<br>С                                                                    | 47 15 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 22 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002<br>0.005                                              |                                                                                                                                                                                                                                                                                                              | A 20                                                           | M.L.D            |
| TOLO                        | ∿/.<br>0%                                                                  | 4/ 32 12./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 18 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005                                                       | King County Airport<br>Toledo (CREST)                                                                                                                                                                                                                                                                        | A20<br>EPI.BB                                                  | I<br>Microwave.E |
| TTW                         | â                                                                          | 47 11 40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121 41 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.542                                                       | Tolt Reservoir (CREST)                                                                                                                                                                                                                                                                                       | EPI.BB3                                                        | l l              |
| UPS                         | %                                                                          | 47 15 50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 29 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.542<br>0.113                                              | University of Puget Sound                                                                                                                                                                                                                                                                                    | K2                                                             | Ī                |
| ÚWFH<br>VVHS                | 4%<br>(7                                                                   | 48 0 31.0<br>43 44 36.0<br>47 15 29.0<br>47 32 12.7<br>44 37 190<br>47 .11 40.7<br>47 15 50.2<br>48 32 46.0<br>47 25 25.1<br>47 36 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 122 \ 18 \ 1.5 \\ 123 \ 55 \ 21.0 \\ 121 \ 41 \ 20 \ 0 \\ 122 \ 29 \ 1.1 \\ 123 \ 0 \ 43.0 \\ 122 \ 27 \ 13 \ 1 \\ 122 \ 10 \ 27.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.010                                                       | Friday Harbor Laboratories<br>Vashon High School<br>Wilburton Instructional Services Center                                                                                                                                                                                                                  | K2<br>K2<br>K2                                                 | 1                |
| WISC                        | SA<br>Cir                                                                  | 47 36 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122 27 13 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.095<br>0.056                                              | Vasnon High School<br>Wilburton Instructional Services Cantar                                                                                                                                                                                                                                                | K2<br>K2                                                       | I.               |
|                             |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                       | mountin insulucional activities center                                                                                                                                                                                                                                                                       |                                                                | <u> </u>         |

Table 3A also indicates the felt events this quarter that generated Community Internet Intensity Maps (CIIM). CIIM maps are made using Internet reports. For a well-felt event hundreds (or thousands) of people fill out an on-line form describing their experiences during the earthquake. These "felt" reports are converted into numeric intensity values, and the CIIM map shows the average intensity by zip code.

CIIM Maps: http://pasadena.wr.usgs.gov/shake/pnw/

In addition to the PNSN web site, the UW Dept. of Earth and Space Sciences and the PNSN host several other earthquake-related web sites:

- Volcano Systems Center: http://www.vsc.washington.edu is a cooperative effort of the UW and the USGS that links volcano-related activities of the UW Dept. of Earth and Space Sciences and Oceanography departments with related USGS activities.
- Seismosurfing: http://www.ess.washington.edu/seismosurfing.html is a comprehensive listing of sites worldwide that offer substantive seismology data and information. This page is mirrored at two sites in Europe.
- The Council of the National Seismic Systems (CNSS): http://www.cnss.org features composite listings and maps of recent U.S. earthquakes, and documentation of the EARTHWORM system.
- "Tsunami!" : http://www.ess.washington.edu/tsunami offers many pages, including an excellent discussion on the physics of tsunamis, and short movie clips. It was developed by Benjamin Cook under the direction of Dr. Catherine Petroff (UW Civil Engineering).
- The UW Dept. of Earth and Space Sciences Global Positioning System (GPS): http://www.ess.washington.edu/GPS/gps.html

site provides information on geodetic studies of crustal deformation in Washington and Oregon.

#### **Events, Meetings, and Presentations**

PNSN staff continued to provide information to the public and to work with organizations whose goals and objectives are in line with the PNSN mission. Below is a summary of activities. *Scientific:* 

- Steve Malone gave an invited lecture at the Geological Survey of Canada in Vancouver, BC entitled "Magma recharge at Cascade Volcanos".
- Steve Malone participated in a one-day review meeting at CVO on the volcanic situation at Three-Sisters Volcano.
- At the AGU meetings this year, Steve Malone participated in a number of "sub-meetings" on the ANSS, IRIS Board of Directors and on the formation of a "Consortium of US Volcano Observatories" (CUSVO)

Mitigation and Emergency Management:

- Tony Qamar and Bill Steele attended a meeting of Washington State Seismic Safety Committee. Dr. Qamar chairs the Information and Technology Subcommittee, one of four working groups.
- Steve Malone and Tony Qamar met with the Washington State Emergency Management officials to discuss state participation in and support of earthquake information services of the PNSN.
- Bill Steele participated in numerous CREW Executive board meetings developing a scope of work for 2002 and in preparation of "The Business of Earthquakes" conference.
- Bill Steele gave talks to the Boeing Management Association at Boeing Field, the Washington Insurance Council at Safeco Plaza, and at two locations for Seattle Public Utilities.

#### Education:

- PNSN staff provided 12 Seismology Lab tours and presentations for k-12 students and teachers serving ~300 people.
- Amy Lindemuth continued to work with a team (four) of local educators on content for an upcoming
  web area dedicated to seismology related educational material. In addition, Amy has established
  an e-mail distribution list for educators intended to provide updates on local seismicity, new educational resources available from the PNSN website, and UW seismology lab activities. The list
  currently reaches over 40 educators throughout Washington State. Two reports were sent to the list
  in the fourth quarter explaining the recent seismic events in the Spokane area.
- PNSN Seismic Analyst Amy Wright and other PNSN staff responded to over 250 e-mail messages from the public seeking information on a variety of topics.
- Bill Steele was a guest lecturer for a UW Technical Communications Science Writing Class.

Events

• Ruth Ludwin staffed a booth at the Seattle Project Impact sponsored "Disaster Saturday" community event.

- 13 -

- Bill Steele provided two workshops on Regional Earthquake Hazards for Seattle Public Utilities employees and engineers.
- Steve Malone gave a talk on earthquake hazards to Emerald Heights Retirement Center.
- Bill Steele was the guest of the 30-minute television program on
  - Earthquake Hazards and the Nisqually Quake for "Current Affairs" broadcast on KTBW television at their studios in Federal Way.
- Ruth Ludwin discussed the Spoakane earthquake sequence on National Public Radio's "All Things Considered".
- Ruth Ludwin presented her research on Native American stories related to Cascadia Subduction Zone Earthquakes to the Oregon Archeological Society at the Oregon Museum of Science and Industry in Portland. The same talk was given to the staff at The Oregon Dept. of Geology and Mineral Industries. Ruth also met with DOGAMI Staff to discuss the expansion in Oregon of the PNSN Urban Strong Motion Network.
- The PNSN Staffed an information booth at the two-day CREW Conference entitled "The Business of Earthquakes" at the Westin Hotel in Seattle. Bill Steele managed media relations for the meeting.
- Ruth Ludwin and Bill Steele continued to work with exhibits coordinators from the Burke Museum developing content for a touring exhibit that will be shown at locations throughout the region in 2002.

#### EARTHQUAKE DATA - 2001-D

There were 1,138 events digitally recorded and processed at the University of Washington between October 1 and December 31, 2001. Locations in Washington, Oregon, or southernmost British Columbia were determined for 575 of these events; 502 were classified as earthquakes and 73 as known or suspected blasts. The remaining 563 processed events include teleseisms (138 events), regional events outside the PNSN (62), and unlocated events within the PNSN. Unlocated events within the PNSN include very small earthquakes and some known blasts. Frequent mining blasts occur near Centralia, Washington and we routinely locate some of them.

Table 3A is a listing of all earthquakes reported to have been felt during this quarter, events for which ShakeMaps or Community Internet Intensity Maps (CIIM) are noted.

ShakeMap shows instrumentally measured shaking.

#### Shake Maps: http://www.ess.washington.edu/shake/index.html

CIIM maps are made using "felt" reports relayed via Internet. These "felt" reports are converted into numeric intensity values, and the CIIM map shows the average intensity by zip code.

#### CIIM Maps: http://pasadena.wr.usgs.gov/shake/pnw/

Table 3B is a listing of earthquakes magnitude 2.5 or greater with reasonably constrained focal mechanisms from P-wave first motions. Table 4, located at the end of this report, is this quarter's catalog of earthquakes M 2.0 or greater, located within the network - between 42-49.5 degrees north latitude and 117-125.3 degrees west longitude.

Fig. 2 shows earthquakes with magnitude greater than or equal to 0.0 ( $M_r \ge 0$ ).

Fig. 3 shows blasts and probable blasts ( $M_c \ge 0$ ).

Fig. 4 shows earthquakes located near Mt. Rainier ( $M_c \ge 0$ ).

Fig. 5 shows earthquakes located at Mt. St. Helens ( $M_c \ge 0$ ).

Fig. 6 Map view of earthquakes located near Spokane in 2001.

Fig. 7 Spokane Earthquake sequence, 2001 - Earthquake activity vs. Time

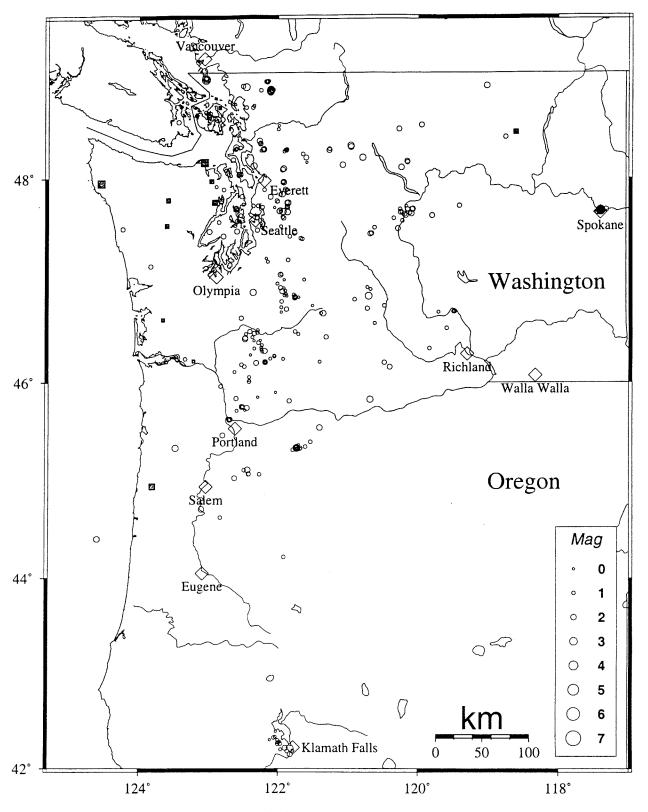



Figure 2. Located earthquakes, magnitude > 0, 4th quarter, 2001. Filled squares indicate earthquakes with depth greater than 30km. Unfilled diamonds represent cities.

- 14 -

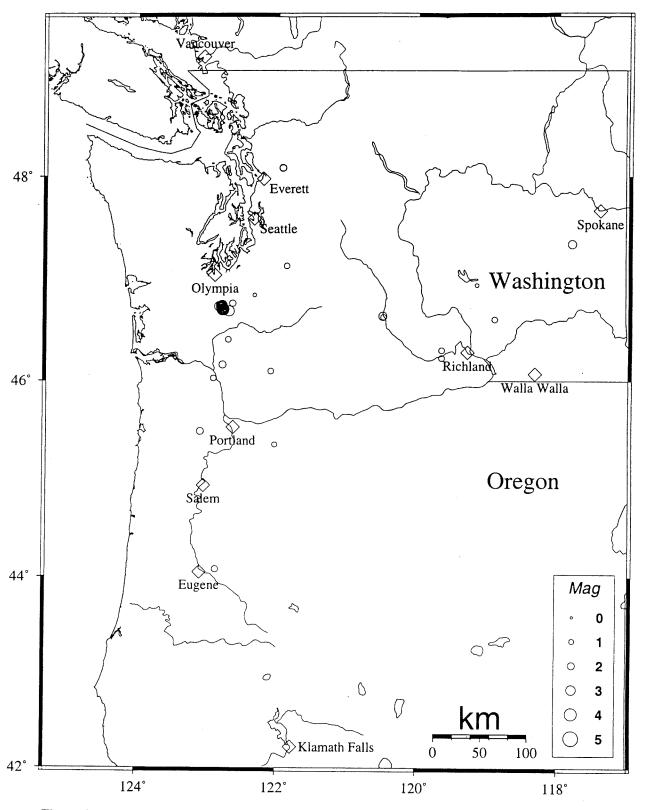
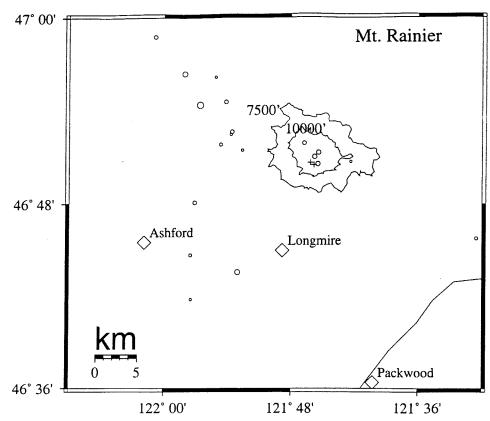
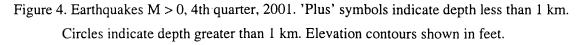





Figure 3. Blasts and probable blasts, 4th quarter, 2001. Unfilled diamonds represent cities.





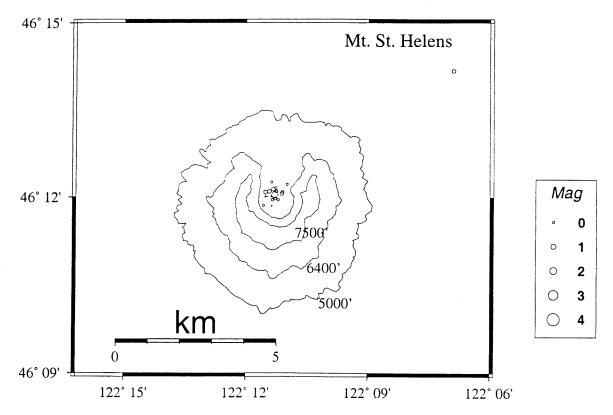
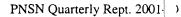




Figure 5. Earthquakes M > 0, 4th quarter, 2001. 'Plus' symbols indicate depth less than 1 km. Circles indicate depth greater than 1 km. Elevation contours shown in feet.



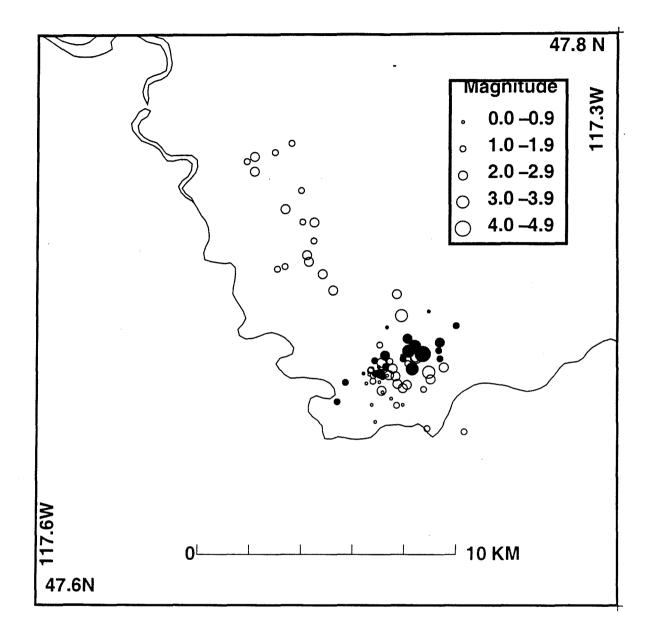



Figure 6. Spokane area earthquakes, 2001. Earthquakes in the fourth quarter (Oct. – Dec.) are filled. S–P times from SPUD, a statiion not synchronized to Universal time, were used to improve locations of some events. All well–constrained events locate within an area of radius ~2km. Locations to the northwest of the central cluster are poorly constrained and are believed to be mislocated.

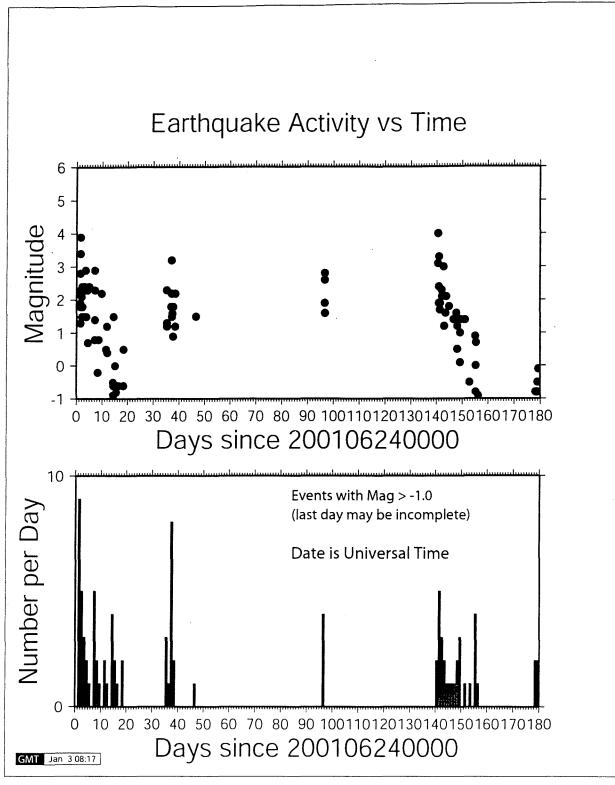



Figure 7. Plots showing Spokane sequence earthquake magnitudes (top) and number of events per day (bottom). Station coverage varied, and our detection capability for events of magnitude 1.0 or less was poor except between July 2 and 24, and after Nov. 12.

|                   |               | CADLE 24       | Ealt Forth | wakas di | uring the 4th Quarter of 2001 |      |          |
|-------------------|---------------|----------------|------------|----------|-------------------------------|------|----------|
| DATE-(UTC)-TIME   | LAT(N)        | LON(W)         | DEPTH      | MAG      | COMMENTS                      | CIIM | ShakeMap |
| 01/10/05 02:26:41 | 48.82N        | 122.11W        | 12.1       | 3.0      | 7.6 km E of Deming, WA        | x    |          |
| 01/10/06 10:52:09 | 48.83N        | 122.10W        | 13.2       | 3.0      | 8.2 km E of Deming, WA        |      |          |
| 01/10/15 04:57:01 | 48.15N        | 123.06W        | 44.4       | 2.9      | 28.6 km E of Port Angeles, WA |      |          |
| 01/11/10 18:30:59 | 48.93N        | 123.04W        | 15.4       | 3.4      | 21.7 km S of Vancouver.BC     | х    |          |
| 01/11/11 16:00:29 | 47.68N        | 117.40W        | 4.7        | 4.0      | 1.9 km N of Spokane, WA       | х    |          |
| 01/11/11 17:21:33 | 47.68N        | 117.40W        | 0.6        | 3.1      | 1.3 km N of Spokane, WA       |      |          |
| 01/11/12 03:03:02 | 47.68N        | 117.40W        | 0.6        | 3.3      | 2.0 km N of Spokane, WA       | х    |          |
| 01/11/12 03:07:40 | 47.68N        | 117.41W        | 0.6        | 1.9      | 1.7 km NNW of Spokane. WA     |      |          |
| 01/11/12 03:11:15 | 47.68N        | 117.41W        | 0.6        | 2.4      | 2.1 km NNW of Spokane, WA     |      |          |
| 01/11/12 11:44:18 | 47.68N        | 117.39W        | 0.6        | 1.7      | 2.2 km NNE of Spokane. WA     |      |          |
| 01/11/12 13:25:59 | 47.68N        | 117.40W        | 0.5        | 1.9      | 2.0 km N of Spokane, WA       |      |          |
| 01/11/13 05:41:45 | 47.69N        | 117.40W        | 0.6        | 2.3      | 2.5 km N of Spokane, WA       |      |          |
| 01/11/13 07:39:05 | 47.68N        | 117.42W        | 0.6        | 2.1      | 1.7 km NW of Spokane, WA      |      |          |
| 01/11/13 10:14:01 | 48.86N        | 122.46W        | 22.0       | 2.5      | 11.7 km N of Bellingham. WA   |      |          |
| 01/11/13 20:26:26 | 47.69N        | 117.40W        | 0.6        | 3.0      | 2.1 km N of Spokane, WA       | x    |          |
| 01/11/14 01:50:51 | 47.69N        | 117.38W        | 0.6        | 1.2      | 3.4 km NNE of Spokane, WA     |      |          |
| 01/11/14 16:41:20 | 47.69N        | 117.32W        | 0.6        | 1.6      | 6.9 km ENE of Spokane, WA     |      |          |
| 01/11/15 00:11:46 | 47.69N        | 117.39W        | 0.0        | 2.1      | 2.5 km NNE of Spokane, WA     |      |          |
| 01/11/16 01:42:29 | 47.68N        | 117.39W        | 0.5        | 1.8      | 2.0 km NNE of Spokane, WA     |      |          |
| 01/11/17 16:18:49 | 47.68N        | 117.42W        | 0.4        | 1.4      | 2.2 km NW of Spokane, WA      |      |          |
| 01/11/18 19:51:12 | 47.68N        | 117.42W        | 0.8        | 1.6      | 1.8 km NW of Spokane, WA      |      |          |
| 01/11/19 04:47:06 | 47.68N        | 117.41W        | 2.2        | 1.2      | 1.7 km NW of Spokane, WA      |      |          |
| 01/11/19 04:47:52 | 47.69N        | 117.41W        | 1.2        | 0.5      | 3.1 km NNW of Spokane, WA     |      |          |
| 01/11/20 06:03:56 | 47.67N        | 117.44W        | 2.6        | 1.0      | 2.8 km WNW of Spokane, WA     |      |          |
| 01/11/20 12:14:42 | 47.67N        | 117.44W        | 0.0        | 1.4      | 3.0 km W of Spokane, WA       |      |          |
| 01/11/22 04:43:01 | 47.68N        | 117.42W        | 2.5        | 1.4      | 1.6 km NW of Spokane, WA      |      |          |
| 01/11/24 00:32:10 | 47.67N        | 117.43W        | 2.1        | -0.5     | 2.1 km WNW of Spokane, WA     |      |          |
| 01/11/26 04:13:15 | 47.68N        | 117.42W        | 2.2        | 0.9      | 1.9 km NW of Spokane, WA      |      |          |
| 01/11/26 09:41:37 | 47.69N        | 117.40W        | 0.0        | -0.8     | 3.0 km N of Spokane, WA       |      |          |
| 01/11/26 09:41:53 | 47.68N        | 117.43W        | 2.1        | 0.0      | 2.2 km WNW of Spokane, WA     |      |          |
| 01/11/26 09:59:53 | 47.68N        | 117.38W        | 4.7        | -1.6     | 2.0 km NE of Spokane, WA      |      |          |
| 01/11/26 10:12:11 | 47.68N        | 117.40W        | 2.3        | -1.6     | 1.7 km N of Spokane, WA       |      |          |
| 01/11/26 11:56:07 | 47.68N        | 117.41W        | 2.2        | 0.7      | 1.8 km NNW of Spokane. WA     |      |          |
| 01/11/27 08:26:58 | 47.65N        | 117.44W        | 0.5        | -0.9     | 3.8 km WSW of Spokane, WA     |      |          |
| 01/12/06 23:24:08 | 46.89N        | 122.36W        | 20.4       | 2.4      | 8.1 km WNW of Eatonville, WA  |      |          |
| 01/12/19 06:39:26 | 47.69N        | 117.38W        | 0.0        | -0.8     | 2.8 km NNE of Spokane, WA     |      |          |
| 01/12/19 21:32:17 | 47.67N        | 117.44W        | 2.0        | -0.8     | 2.7 km W of Spokane, WA       |      |          |
| 01/12/20 03:03:20 | 47.67N        | 117.44W        | 2.0        | -0.5     | 2.8 km W of Spokane, WA       |      |          |
| 01/12/20 08:30:43 | 47.67N        | 117.43W        | 1.8        | -0.1     | 2.6 km W of Spokane, WA       |      |          |
| 01/12/25 03:58:53 | 47.68N        | 117.42W        | 0.2        | -0.7     | 2.0 km WNW of Spokane, WA     |      |          |
| 01/12/27 22:11:20 | 47.66N        | 117.43W        | 0.0        | -0.5     | 2.4 km W of Spokane, WA       |      |          |
| 01/12/29 11:57:27 | <u>47.67N</u> | <u>117.43W</u> | 0.0        | -0.8     | 2.5 km W of Spokane, WA       |      |          |

| TABLE 3B - Earthquakes M 2.5 or larger during the 4th Quarter of 2001<br>Focal mechanisms noted where computed. Some earthquakes have more than one possible mechanism. |        |        |      |     |                               |        |      |      |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------|-----|-------------------------------|--------|------|------|--|--|--|--|
| DATE-(UTC)-TIME                                                                                                                                                         | LAT(N) | LON(W) | DEP  | MAG | COMMENTS                      | STRIKE | DIP  | RAKE |  |  |  |  |
| yy/mm/dd hh:mm:ss                                                                                                                                                       | deg.   | deg.   | km   |     |                               | deg.   | deg. | deg. |  |  |  |  |
| 01710/05 02:26:41                                                                                                                                                       | 48.83  | 122.11 | 12.1 | 3.0 | 7.6 km E of Deming, WA        | 25     | 60   | -10  |  |  |  |  |
| 01/10/06 10:52:09                                                                                                                                                       | 48.84  | 122.11 | 13.2 | 3.0 | 8.2 km E of Deming, WA        | 20     | 90   | -10  |  |  |  |  |
| 01/10/15 04:57:01                                                                                                                                                       | 48.15  | 123.06 | 44.4 | 2.9 | 28.6 km E of Port Angeles, W/ | A, 40  | 65   | 170  |  |  |  |  |
| 01/11/10 18:30:59                                                                                                                                                       | 48.94  | 123.04 | 15.4 | 3.4 | 21.7 km S of Vancouver.BC     | 60     | 70   | 60   |  |  |  |  |
| 01/11/11 16:00:29                                                                                                                                                       | 47.69  | 117.40 | 4.7  | 4.0 | 1.9 km N of Spokane, WA       | 40     | 40   | 10   |  |  |  |  |
| 01/11/11 17:21:33                                                                                                                                                       | 47.68  | 117.41 | 0.6  | 3.1 | 1.3 km N of Spokane, WA       | -      | -    | -    |  |  |  |  |
| 01/11/12 03:02:62                                                                                                                                                       | 47.69  | 117.41 | 0.6  | 3.3 | 2.0 km N of Spokane. WA       | 275    | 90   | 10   |  |  |  |  |
| 01/11/13 10:14:01                                                                                                                                                       | 48.87  | 122.47 | 22.0 | 2.5 | 11.7 km N of Bellingham, WA   | 50     | 30   | 100  |  |  |  |  |
| 01/11/13 20:25:86                                                                                                                                                       | 47.69  | 117.40 | 0.6  | 3.0 | 2.1 km N of Spokane, WA       | -      | -    | -    |  |  |  |  |
| 01/11/17 03:12:64                                                                                                                                                       | 46.86  | 120.71 | 2.1  | 2.6 | 20.6 km SW of Ellensburg, WA  | -      | -    | -    |  |  |  |  |
| 01/12/03 07:19:55                                                                                                                                                       | 45.33  | 121.73 | 5.3  | 2.6 | 5.4 km SSW of Mt Hood, OR     | 25     | 45   | -70  |  |  |  |  |

#### **OREGON SEISMICITY**

During the fourth quarter of 2001, a total of 46 earthquakes were located in Oregon between 42.0° and 45.5° north latitude, and between 117° and 125° west longitude. The largest earthquakes in Oregon this quarter were magnitude 2.4 and 2.6 earthquakes on December 2nd and 3rd UTC, respectively. Both were located about 5 km southwest of Mt. Hood.

A detailed study of Mt. Hood seismicity is underway and will be reported on in a later quarterly.

In the Klamath Falls area, 15 earthquakes occurred in the fourth quarter of 2001. Since 1994, most earthquakes in the Klamath Falls area have been considered aftershocks or earthquake activity related to a pair of damaging earthquakes in September, 1993. The 1993 earthquakes were followed by a vigorous aftershock sequence which decreased over time.

#### WESTERN WASHINGTON SEISMICITY

During the fourth quarter of 2001, 368 earthquakes were located between 45.5° and 49.5° north latitude and between 121° and 125.3° west longitude. Six earthquakes were felt this quarter in western Washington. Details are in Table 3A.

The largest felt earthquake in western Washington was a magnitude 3.4 earthquake near Point Roberts on November 10. Point Roberts, although in the United States, is isolated from the US mainland and located at the southern tip of a peninsula that originates in Canada. It is closer to Vancouver, B.C. than to Bellingham.

## CASCADE VOLCANOS

**Mount Rainier Area:** Figure 4 shows earthquakes near Mount Rainier. The number of events in close proximity to the cone of Mt. Rainier varies over the course of the year, since the source of much of the shallow activity is presumably ice movement or avalanching at the surface, which is seasonal in nature. Events with very low frequency signals (1-3 Hz) believed to be icequakes are assigned type "L" in the catalog. Emergent, very long duration signals, probably due to rockfalls or avalanches, are assigned type "S" (see Key to Earthquake Catalog). There were no events flagged "L" or "S" located at Mount Rainier this quarter but 20 "L" or "S" events were recorded, but were too small to locate reliably. Type L and S events are not shown in Fig. 4.

A total of 40 tectonic events (19 of these were smaller than magnitude 0.0, and thus are not shown in Fig. 4) were located within the region shown in Fig. 4. The largest tectonic earthquake located near Mt. Rainier this quarter was a magnitude 1.6 earthquake on November 16 UTC, located about 15 km west-north-west of the summit at a depth of about 12 km. This quarter, 23 of the tectonic earthquakes were located in the "Western Rainier Seismic Zone" (WRSZ), a north-south trending lineation of seismicity approximately 15 km west of the summit of Mt. Rainier (for counting purposes, the western zone is defined as 46.6-47 degrees north latitude and 121.83-122 west longitude). Within 5 km of the summit, there were 13 (7 of them smaller than magnitude 0.0 and thus not shown in Fig. 4) higher-frequency tectonic-style earthquakes, and the remaining events were scattered around the cone of Rainier as seen in Fig. 4.

Mount St. Helens Area: Figure 5 shows volcano-tectonic earthquakes near Mount St. Helens. Low frequency (L) and avalanche or rockfall events (S) are not shown.

Beginning on November 3, 2001 a vigorous sequence of very small earthquakes was recorded on stations on Mount St. Helens. An information statement:

http://vulcan.wr.usgs.gov/Volcanoes/Cascades/CurrentActivity/2001/current\_updates\_20011103.html was issued by the USGS Cascades Volcano Observatory. These events were located inside the crater of Mt. St. Helens within the dome of hardened lava that has been extruded since the catastrophic eruption of May 18, 1980. Station SEP is located on the dome (see Fig. 1C), and recorded about 3.800 tiny events during the first week of November. However almost all of the events in this swarm were very small. Their signals were not well recorded outside the crater, and precise locations were impossible. A web page with links to webicorder records, spectrograms, and other information is at:

## http://spike.ess.washington.edu/SEIS/PNSN/WEBICORDER/HELENS/

This quarter, 126 earthquakes were located at Mount St. Helens in the area shown in Fig. 5. Of these earthquakes, 18 were magnitude 0.0 or larger and 4 were deeper than 4 km. The largest tectonic earthquake at Mount St. Helens this quarter was a magnitude 1.7 event on Oct. 26 UTC located .4 km NE of Mount St. Helens.

One type "S" or "L" events was located at Mount St. Helens, and 52 "L" or "S" events too small to locate were recorded.

## EASTERN WASHINGTON SEISMICITY

During the fourth quarter of 2001, 88 earthquakes were located in eastern Washington in the area between 45.5-49.5 degrees north latitude and 117-121 degrees west longitude.

The most interesting activity in eastern Washington this quarter was the continuation of a very unusual sequence of earthquakes in the Spokane urban area.

#### **UPDATE - Spokane Earthquake Activity in 2001**

Spokane is an area that historically has been seismically quiet, and is located at the very edge of the seismograph network operated by the Pacific Northwest Seismograph Network (PNSN). The extended, intermittent sequence of 2001 is unprecedented in the 150 year written history of the area. This very shallow crustal sequence is occurring immediately beneath urban Spokane, a city with many unreinforced masonry buildings. In addition, incredibly tiny earthquakes (magnitudes as small as -1.7) are being reported felt and/or heard. This appears to be due to the extreme shallowness of the events and the high population density. Figure 6 shows a map view of earthquakes in 2001 located near Spokane. Fourth-quarter earthquakes are shown as filled symbols. Figure 7 shows the magnitude distribution vs time (top), and the number of events per day vs time (bottom).

On the morning of June 25 (at 7:15 and 8:01 AM PDT), two earthquakes, M 3.9 and M 3.4 were widely felt in urban Spokane. Additional smaller events continued and twenty-three other events were located during the following week. A foreshock on May 24 of M 2.0 was also felt. At the beginning of July activity dropped off for several weeks.

Another spurt of activity began in late July. Fourteen events were located between July 29 and August 1. The largest event in this time period was magnitude 3.2. Following August 1, seismicity quieted for about 8 weeks,

In late September seismicity picked up again when four events occurred within a ten-minute period on Sept. 28. The largest was a magnitude 2.8 that was noticed by many people in the downtown area, as was the magnitude 2.6 that followed about 4 minutes later. The September events were followed by a quiet period lasting about 6 weeks.

On November 11, activity resumed with a magnitude 4.0 earthquake, the largest in the sequence so far. Additional earthquakes followed, and a total of 36 earthquakes were located in Spokane during the fourth quarter. Out of the total of 36, 35 were reported felt, including events as small as -1.6.

During the fits and starts of activity in the Spokane sequence, various seismic recording equipment was operated:

• A temporary array of five stations was operated during the first three weeks of July, and detected and provided accurate locations for low-magnitude events. However, this array operated during a period of low seismicity.

• Another temporary station, SPUD, operated without external time from June 26 to Sept. 25. The clock drifted more and more as time went on. Because of the importance of this data, we adapted our location program to use "S minus P" times as a location constraint. Immediately after SPUD was removed in September another spurt of activity occurred.

• A permanent station, SFER, was installed in August.

• Five additional stations were added after the magnitude 4.0 shock of Nov. 11 (see Fig. 1D). Although these stations are considered "temporary" we plan to operate them for some time.

Times, locations, and depths of all felt earthquakes in the PNSN region this quarter are given in Table 3A.

## OTHER SOURCES OF EARTHQUAKE INFORMATION

We provide automatic computer-generated alert messages about significant Washington and Oregon earthquakes by e-mail, FAX or via the pager-based RACE system to institutions needing such information, and we regularly exchange phase data via e-mail with other regional seismograph network operators. The "Outreach Activities" section describes how to access PNSN data via e-mail, Internet, and World-Wide-Web. To request additional information by e-mail, contact seis info@ess.washington.edu.

Earthquake information in the quarterlies has been published in final form by the Washington State Department of Natural Resources as information circulars entitled "Earthquake Hypocenters in Washington and Northern Oregon" covering the period 1970-1989 (see circulars Nos. 53, 56, 64-66, 72, 79, 82-84, and 89). These circulars, plus circular No. 85, "Washington State Earthquake Hazards", are available from Washington Dept. of Natural Resources, Division of Geology and Earth Resources, Post Office Box 47007, Olympia, WA. 98504-7007, or by telephone at (360) 902-1450.

Several excellent maps of Pacific Northwest seismicity are available. A very colorful perspectiveview map (18" x 27") entitled "Major Earthquakes of the Pacific Northwest" depicts selected epicenters of strong earthquakes (magnitudes > 5.1) that have occurred in the Pacific Northwest. A more detailed fullcolor map is called "Earthquakes in Washington and Oregon 1872-1993", by Susan Goter (USGS Open-File Report 94-226A). It is accompanied by a companion pamphlet "Washington and Oregon Earthquake History and Hazards", by Yelin, Tarr, Michael, and Weaver (USGS Open-File Report 94-226B). The pamphlet is also available separately. Maps can be ordered from: "Earthquake Maps", U.S. Geological Survey, Box 25046, Federal Center, MS 967, Denver, CO 80225, phone (303) 273-8477. The price of each map is \$12. (including US shipping and handling).

USGS Cascades Volcano Observatory has a video, "Perilous Beauty: The Hidden Dangers of Mount Rainier", about the risk of lahars from Mount Rainier. Copies are available through: North west Interpretive Association (NWIA), 909 First Avenue Suite 630, Seattle WA 98104, Telephon e: (206) 220-4141, Fax: (206) 220-4143.

Other regional agencies provide earthquake information. These include the Geological Survey of Canada (Pacific Geoscience Centre, Sidney, B.C.; (250) 363-6500, FAX (250) 363-6565), which produces monthly summaries of Canadian earthquakes; the US Geological Survey which produces weekly reports called "Seismicity Reports for Northern California" (USGS, attn: Steve Walter, 345 Middlefield Rd, MS-977, Menlo Park, CA, 94025) and "Weekly Earthquake Report for Southern California" (USGS, attn: Dr. Kate Hutton or Dr. Lucy Jones, CalTech, Pasadena, CA.).

## Key to Earthquake Catalog in Table 4

- TIME Origin time is calculated for each earthquake on the basis of multi-station arrival times. Time is given in Coordinated Universal Time (UTC), in hours:minutes:seconds. To convert to Pacific Standard Time (PST) subtract eight hours, or to Pacific Davlight Time subtract seven hours.
- LAT North latitude of the epicenter, in degrees and minutes.
- LONG West longitude of the epicenter, in degrees and minutes.
- **DEPTH** The depth, given in kilometers, is usually freely calculated from the arrival-time data. In some instances, the depth must be fixed arbitrarily to obtain a convergent solution. Such depths are noted by an asterisk (\*) in the column immediately following the depth. A \$ or a # following the depth mean that the maximum number of iterations has been exceeded without meeting convergence tests and both the location and depth have been fixed.
- MAG Coda-length magnitude M<sub>c</sub>, an estimate of local magnitude M<sub>L</sub> (Richter, C.F., 1958, Elementary Seismology: W.H. Freeman and Co., 768p), calculated using the coda-length/magnitude relationship determined for Washington (Crosson, R.S., 1972, Bull. Seism. Soc. Am., v. 62, p. 1133-1171). Where blank, data were insufficient for a reliable magnitude determination. Normally, the only earthquakes with undetermined magnitudes are very small ones. Magnitudes may be revised as we improve our analysis procedure.
- NS/NP NS is the number of station observations, and NP the number of P and S phases used to calculate the earthquake location. A minimum of three stations and four phases are required. Generally, more observations improve the quality of the solution.
- GAP Azimuthal gap. The largest angle (relative to the epicenter) containing no stations.
- **RMS** The root-mean-square residual (observed arrival time minus predicted arrival time) at all stations used to locate the earthquake. It is only useful as a measure of the quality of the solution when 5 or more well-distributed stations are used in the solution. Good solutions are normally characterized by **RMS** values less than about 0.3 sec.
- Q Two Quality factors indicate the general reliability of the solution (A is best quality, D is worst). Similar quality factors are used by the USGS for events located with the computer program HYPO71. The first letter is a measure of the hypocenter quality based on travel-time residuals. For example: A quality requires an RMS less than 0.15 sec while an RMS of 0.5 sec or more is D quality (estimates of the uncertainty in hypocenter location also affect this quality parameter). The second letter of the quality code depends on the spatial distribution of stations around the epicenter, i.e. number of stations, their azimuthal distribution, and the minimum distance (DMIN) from the epicenter to a station. Quality A requires a solution with 8 or more phases. GAP  $\leq$  90° and DMIN  $\leq$  (5 km or depth, whichever is greater). If the number of phases, NP, is 5 or fewer or GAP > 180° or DMIN > 50 km the solution is assigned quality D.
- MOD The crustal velocity model used in location calculations (Ludwin, R.S., et al., 1994, Earthquake hypocenters in Washington and northern Oregon, 1987-1989, and Operation of the Washington Regional Seismograph Network, Information Circular 89, Washington State Dept. of Natural Resources).
  - P3 Puget Sound model
  - C3 Cascade model
  - S3 Mt. St. Helens model including Elk Lake
  - N3 northeastern model
  - E3 southeastern model
  - O0 Oregon model
  - K3 Southern Oregon, Klamath Falls area model
  - R0 and J1 Regional and Offshore models
- **TYP** Events flagged in Table 4 use the following code:
  - F earthquake reported to have been felt
  - P probable explosion
  - L low frequency earthquake (e.g. glacier movement, volcanic activity)
  - H handpicked from helicorder records
  - S Special event (e.g. rockslide, avalanche, volcanic steam emission, harmonic tremor, sonic boom), not a man-
  - made explosion or tectonic earthquake
    - X known explosion

## TABLE 4

Tectonic Earthquakes, Magnitude 2.0 or larger, Fourth Quarter, 2001. Within an area 42-49.5 degrees north latitude and 117-125.3 degrees west longitude.

| Oct 2001                               |                                                                                                                                     |                                                                                                          |                                                                                                      |                                                                         |                                                                                                                    |                                                                                  |                                                            |                                                                      |                                                    |                                                    |                            |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------|--|
| DAY                                    | TIME                                                                                                                                | LAT                                                                                                      | LON                                                                                                  | DEPTH                                                                   | М                                                                                                                  | NS/NP                                                                            | GAP                                                        | RMS                                                                  | Q                                                  | MOD                                                | TYP                        |  |
| 4                                      | 00:42:14.93                                                                                                                         | 45 20.22                                                                                                 | 123 28.37                                                                                            | 23.88                                                                   | 2.3                                                                                                                | 6/008                                                                            | 279                                                        | 0.05                                                                 | AD                                                 | O0                                                 |                            |  |
| 5                                      | 02:26:41.21                                                                                                                         | 48 49.79                                                                                                 | 122 06.80                                                                                            | 12.09\$                                                                 | 3.0                                                                                                                | 28/032                                                                           | 105                                                        | 0.27                                                                 | BB                                                 | P3                                                 | F                          |  |
| 5                                      | 12:23:58.65                                                                                                                         | 48 49.41                                                                                                 | 122 06.69                                                                                            | 12.42                                                                   | 2.5                                                                                                                | 19/025                                                                           | 104                                                        | 0.29                                                                 | BB                                                 | P3                                                 |                            |  |
| 6                                      | 10:52:09.98                                                                                                                         | 48 50.34                                                                                                 | 122 06.43                                                                                            | 13.21                                                                   | 3.0                                                                                                                | 37/041                                                                           | 110                                                        | 0.30                                                                 | CB                                                 | P3                                                 | F                          |  |
| 6                                      | 11:03:22.79                                                                                                                         | 48 50.15                                                                                                 | 122 05.69                                                                                            | 13.82                                                                   | 2.1                                                                                                                | 17/018                                                                           | 113                                                        | 0.28                                                                 | BB                                                 | P3                                                 |                            |  |
| 7                                      | 14:52:07.73                                                                                                                         | 45 49.63                                                                                                 | 120 41.29                                                                                            | 11.34                                                                   | 2.4                                                                                                                | 24/027                                                                           | 129                                                        | 0.26                                                                 | BB                                                 | E3                                                 |                            |  |
| 15                                     | 04:57:01.89                                                                                                                         | 48 09.13                                                                                                 | 123 03.78                                                                                            | 44.36                                                                   | 2.9                                                                                                                | 38/043                                                                           | 31                                                         | 0.16                                                                 | BA                                                 | P3                                                 | F                          |  |
| 18                                     | 08:48:14.96                                                                                                                         | 46 41.07                                                                                                 | 121 21.58                                                                                            | 5.40                                                                    | 2.1                                                                                                                | 43/051                                                                           | 72                                                         | 0.27                                                                 | BC                                                 | C3                                                 |                            |  |
| 18                                     | 13:32:41.77                                                                                                                         | 48 18.76                                                                                                 | 120 58.30                                                                                            | 9.14                                                                    | 2.2                                                                                                                | 20/023                                                                           | 164                                                        | 0.25                                                                 | BC                                                 | C3                                                 |                            |  |
| 19                                     | 13:49:52.29                                                                                                                         | 45 32.69                                                                                                 | 121 24.49                                                                                            | 4.69                                                                    | 2.0                                                                                                                | 36/040                                                                           | 57                                                         | 0.38                                                                 | CC                                                 | C3                                                 |                            |  |
| 25                                     | 11:59:44.59                                                                                                                         | 44 56.56                                                                                                 | 123 48.52                                                                                            | 43.05\$                                                                 | 2.2                                                                                                                | 14/017                                                                           | 220                                                        | 0.19                                                                 | BD                                                 | 00                                                 |                            |  |
| 26                                     | 18:30:03.47                                                                                                                         | 47 41.23                                                                                                 | 121 58.87                                                                                            | 1.22*                                                                   | 2.1                                                                                                                | 24/027                                                                           | 72                                                         | 0.14                                                                 | AB                                                 | P3                                                 |                            |  |
| 28                                     | 09:26:59.69                                                                                                                         | 47 40.97                                                                                                 | 121 56.07                                                                                            | 25.28                                                                   | 2.3                                                                                                                | 50/053                                                                           | 30                                                         | 0.18                                                                 | BA                                                 | P3                                                 |                            |  |
|                                        |                                                                                                                                     |                                                                                                          |                                                                                                      |                                                                         |                                                                                                                    |                                                                                  |                                                            |                                                                      |                                                    |                                                    |                            |  |
|                                        |                                                                                                                                     |                                                                                                          |                                                                                                      | Nov 2                                                                   | 001                                                                                                                |                                                                                  |                                                            |                                                                      |                                                    |                                                    |                            |  |
| DAY                                    | TIME                                                                                                                                |                                                                                                          |                                                                                                      |                                                                         |                                                                                                                    |                                                                                  |                                                            |                                                                      |                                                    |                                                    |                            |  |
|                                        | I IIVIL.                                                                                                                            | LAT                                                                                                      | LON                                                                                                  | DEPTH                                                                   | М                                                                                                                  | NS/NP                                                                            | GAP                                                        | RMS                                                                  | Q                                                  | MOD                                                | TYP                        |  |
| 7                                      | 12:54:40.54                                                                                                                         | LAT<br>46 26.10                                                                                          | LON<br>122 28.80                                                                                     | DEPTH<br>18.89                                                          | M<br>2.1                                                                                                           | NS/NP<br>41/051                                                                  | GAP<br>45                                                  | RMS<br>0.18                                                          | Q<br>BA                                            | MOD<br>S3                                          | TYP                        |  |
| 7<br>10                                |                                                                                                                                     |                                                                                                          |                                                                                                      |                                                                         |                                                                                                                    |                                                                                  |                                                            |                                                                      | -                                                  |                                                    | TYP<br>F                   |  |
|                                        | 12:54:40.54                                                                                                                         | 46 26.10                                                                                                 | 122 28.80                                                                                            | 18.89                                                                   | 2.1                                                                                                                | 41/051                                                                           | 45                                                         | 0.18                                                                 | BA                                                 | <b>S</b> 3                                         |                            |  |
| 10                                     | 12:54:40.54<br>18:30:59.73                                                                                                          | 46 26.10<br>48 56.10                                                                                     | 122 28.80<br>123 02.46                                                                               | 18.89<br>15.45                                                          | 2.1<br>3.4                                                                                                         | 41/051<br>36/038                                                                 | 45<br>192                                                  | 0.18<br>0.33                                                         | BA<br>CD                                           | S3<br>P3                                           | F                          |  |
| 10<br>11                               | 12:54:40.54<br>18:30:59.73<br>16:00:29.66                                                                                           | 46 26.10<br>48 56.10<br>47 41.29                                                                         | 122 28.80<br>123 02.46<br>117 24.01                                                                  | 18.89<br>15.45<br>4.69                                                  | 2.1<br>3.4<br>4.0                                                                                                  | 41/051<br>36/038<br>7/007                                                        | 45<br>192<br>143                                           | 0.18<br>0.33<br>0.19                                                 | BA<br>CD<br>BC                                     | S3<br>P3<br>N3                                     | F<br>F                     |  |
| 10<br>11<br>11                         | 12:54:40.54<br>18:30:59.73<br>16:00:29.66<br>17:21:33.50                                                                            | 46 26.10<br>48 56.10<br>47 41.29<br>47 40.99                                                             | 122 28.80<br>123 02.46<br>117 24.01<br>117 24.33                                                     | 18.89<br>15.45<br>4.69<br>0.61                                          | 2.1<br>3.4<br>4.0<br>3.1                                                                                           | 41/051<br>36/038<br>7/007<br>7/007                                               | 45<br>192<br>143<br>138                                    | 0.18<br>0.33<br>0.19<br>0.23                                         | BA<br>CD<br>BC<br>BC                               | S3<br>P3<br>N3<br>N3                               | F<br>F<br>F                |  |
| 10<br>11<br>11<br>12                   | 12:54:40.54<br>18:30:59.73<br>16:00:29.66<br>17:21:33.50<br>03:03:02.95                                                             | 46 26.10<br>48 56.10<br>47 41.29<br>47 40.99<br>47 41.36                                                 | 122 28.80<br>123 02.46<br>117 24.01<br>117 24.33<br>117 24.45                                        | 18.89<br>15.45<br>4.69<br>0.61<br>0.59                                  | 2.1<br>3.4<br>4.0<br>3.1<br>3.3                                                                                    | 41/051<br>36/038<br>7/007<br>7/007<br>7/007                                      | 45<br>192<br>143<br>138<br>139                             | 0.18<br>0.33<br>0.19<br>0.23<br>0.21                                 | BA<br>CD<br>BC<br>BC<br>BC                         | S3<br>P3<br>N3<br>N3<br>N3                         | F<br>F<br>F                |  |
| 10<br>11<br>11<br>12<br>12             | 12:54:40.54<br>18:30:59.73<br>16:00:29.66<br>17:21:33.50<br>03:03:02.95<br>03:11:15.68                                              | 46 26.10<br>48 56.10<br>47 41.29<br>47 40.99<br>47 41.36<br>47 41.26                                     | 122 28.80<br>123 02.46<br>117 24.01<br>117 24.33<br>117 24.45<br>117 25.18                           | 18.89<br>15.45<br>4.69<br>0.61<br>0.59<br>0.55                          | 2.1<br>3.4<br>4.0<br>3.1<br>3.3<br>2.4                                                                             | 41/051<br>36/038<br>7/007<br>7/007<br>7/007<br>7/008                             | 45<br>192<br>143<br>138<br>139<br>132                      | 0.18<br>0.33<br>0.19<br>0.23<br>0.21<br>0.23                         | BA<br>CD<br>BC<br>BC<br>BC<br>BB                   | S3<br>P3<br>N3<br>N3<br>N3<br>N3                   | F<br>F<br>F<br>F<br>F      |  |
| 10<br>11<br>11<br>12<br>12<br>13       | 12:54:40.54<br>18:30:59.73<br>16:00:29.66<br>17:21:33.50<br>03:03:02.95<br>03:11:15.68<br>05:41:45.77                               | 46 26.10<br>48 56.10<br>47 41.29<br>47 40.99<br>47 41.36<br>47 41.26<br>47 41.62                         | 122 28.80<br>123 02.46<br>117 24.01<br>117 24.33<br>117 24.45<br>117 25.18<br>117 24.48              | 18.89<br>15.45<br>4.69<br>0.61<br>0.59<br>0.55<br>0.60                  | <ul> <li>2.1</li> <li>3.4</li> <li>4.0</li> <li>3.1</li> <li>3.3</li> <li>2.4</li> <li>2.3</li> </ul>              | 41/051<br>36/038<br>7/007<br>7/007<br>7/007<br>7/008<br>6/007                    | 45<br>192<br>143<br>138<br>139<br>132<br>139               | 0.18<br>0.33<br>0.19<br>0.23<br>0.21<br>0.23<br>0.24                 | BA<br>CD<br>BC<br>BC<br>BC<br>BB<br>BC             | S3<br>P3<br>N3<br>N3<br>N3<br>N3<br>N3             | F<br>F<br>F<br>F<br>F      |  |
| 10<br>11<br>11<br>12<br>12<br>13<br>13 | 12:54:40.54<br>18:30:59.73<br>16:00:29.66<br>17:21:33.50<br>03:03:02.95<br>03:11:15.68<br>05:41:45.77<br>07:39:05.11                | 46 26.10<br>48 56.10<br>47 41.29<br>47 40.99<br>47 41.36<br>47 41.26<br>47 41.62<br>47 40.88             | 122 28.80<br>123 02.46<br>117 24.01<br>117 24.33<br>117 24.45<br>117 25.18<br>117 24.48<br>117 25.33 | 18.89<br>15.45<br>4.69<br>0.61<br>0.59<br>0.55<br>0.60<br>0.56          | <ul> <li>2.1</li> <li>3.4</li> <li>4.0</li> <li>3.1</li> <li>3.3</li> <li>2.4</li> <li>2.3</li> <li>2.1</li> </ul> | 41/051<br>36/038<br>7/007<br>7/007<br>7/007<br>7/008<br>6/007<br>5/007           | 45<br>192<br>143<br>138<br>139<br>132<br>139<br>128        | 0.18<br>0.33<br>0.19<br>0.23<br>0.21<br>0.23<br>0.24<br>0.48         | BA<br>CD<br>BC<br>BC<br>BB<br>BB<br>BC<br>CD       | S3<br>P3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3       | F<br>F<br>F<br>F<br>F      |  |
| 10<br>11<br>12<br>12<br>13<br>13<br>13 | 12:54:40.54<br>18:30:59.73<br>16:00:29.66<br>17:21:33.50<br>03:03:02.95<br>03:11:15.68<br>05:41:45.77<br>07:39:05.11<br>10:14:01.12 | 46 26.10<br>48 56.10<br>47 41.29<br>47 40.99<br>47 41.36<br>47 41.26<br>47 41.62<br>47 40.88<br>48 52.08 | 122 28.80<br>123 02.46<br>117 24.01<br>117 24.33<br>117 24.45<br>117 25.18<br>117 25.33<br>122 27.94 | 18.89<br>15.45<br>4.69<br>0.61<br>0.59<br>0.55<br>0.60<br>0.56<br>21.99 | 2.1<br>3.4<br>4.0<br>3.1<br>3.3<br>2.4<br>2.3<br>2.1<br>2.5                                                        | 41/051<br>36/038<br>7/007<br>7/007<br>7/007<br>7/008<br>6/007<br>5/007<br>32/034 | 45<br>192<br>143<br>138<br>139<br>132<br>139<br>128<br>157 | 0.18<br>0.33<br>0.19<br>0.23<br>0.21<br>0.23<br>0.24<br>0.48<br>0.23 | BA<br>CD<br>BC<br>BC<br>BC<br>BB<br>BC<br>CD<br>BC | S3<br>P3<br>N3<br>N3<br>N3<br>N3<br>N3<br>N3<br>P3 | F<br>F<br>F<br>F<br>F<br>F |  |

|     | Dec 2001    |          |           |         |     |        |     |      |      |     |     |  |
|-----|-------------|----------|-----------|---------|-----|--------|-----|------|------|-----|-----|--|
| DAY | TIME        | LAT      | LON       | DEPTH   | М   | NS/NP  | GAP | RMS  | Q    | MOD | TYP |  |
| 2   | 14:10:05.38 | 45 20.08 | 121 44.12 | 2.38    | 2.4 | 33/033 | 41  | 0.35 | CB   | 00  |     |  |
| 3   | 00:54:26.95 | 45 20.14 | 121 44.12 | 2.11    | 2.1 | 22/022 | 57  | 0.33 | CB   | 00  |     |  |
| 3   | 07:19:55.33 | 45 20.09 | 121 44.06 | 5.30    | 2.6 | 29/029 | 47  | 0.32 | CB   | 00  |     |  |
| 4   | 04:33:10.98 | 48 17.82 | 122 36.63 | 22.53   | 2.1 | 18/019 | 44  | 0.19 | BA   | P3  |     |  |
| 6   | 23:24:08.62 | 46 53.60 | 122 21.88 | 20.43   | 2.4 | 51/056 | 43  | 0.16 | BA   | P3  | F   |  |
| 10  | 09:53:34.72 | 48 33.72 | 122 52.37 | 10.99   | 2.0 | 15/018 | 57  | 0.16 | BA   | P3  |     |  |
| 15  | 10:28:53.54 | 48 11.94 | 120 47.99 | 5.49    | 2.2 | 18/021 | 158 | 0.45 | CC - | C3  |     |  |
| 20  | 21:26:53.06 | 48 07.31 | 122 21.32 | 21.99   | 2.4 | 37/041 | 44  | 0.23 | BA   | P3  |     |  |
| 25  | 17:18:32.55 | 48 21.48 | 122 16.17 | 16.46\$ | 2.0 | 37/040 | 36  | 0.54 | DA   | P3  |     |  |
| 29  | 21:03:11.70 | 47 57.14 | 124 32.79 | 36.94   | 2.8 | 26/028 | 197 | 0.29 | BD   | P3  |     |  |

7

#### **APPENDIX 2**

## Publications supported fully or partially under this operating agreement

#### **Reports and Articles**

- Bakun, W.H., R.A. Haugerud, M.G. Hopper, and R.S. Ludwin, 2002 (in press), The December 1872 Washington State Earthquake, BSSA
- Kirkham, H., S. Malone, and J. Delaney, 2000, The NEPTUNE observatory as seismic early warning system. Joint US-Japan conference on earthquake disaster mitigation, Japan, July 10, 2000
- Musumeci, C., S.D. Malone, E. Giampiccolo, and S. Gresta, 2000, Hypocentral distribution, focal mechanisms and the stress field at Mount St. Helens (1995-1998), Annali de Geofisica V. 43, N. 5, p. 889-904.
- Musumeci, C, S.D. Malone, and S. Gresta, in press, Magma System Recharge of Mount St. Helens from precise relative hypocenter location of microearthquakes. Jour. Geophys. Res (in press).
- Nisqually Earthquake Clearinghouse Group, 2001, Nisqually Earthquake Preliminary Reconnaissance Report, http://www.eeri.org/earthquakes/Reconn/Nisqually\_Wa\_2001/NisquallyEQrep.PDF, EERI Reconnaissance Report (32 pp.)
- PNSN Staff, 2001, Preliminary Report on the Mw=6.8 Nisqually, Washington earthquake of 28 February 2001, 2001, Seis. Res. Lett., V. 72, N. 3, pp. 352-361.
- Van Wagoner, T., R.S. Crosson, N.P. Symons, G.F. Medema, K.C. Creager, and L.A. Preston 2001 (in review), High resolution seismic tomography and earthquake relocation n the Puget Lowland, Washington, JGR.

#### Abstracts

- Bakun, W.H. and R.S. Ludwin, 2001 (abstract), Significant Historical Puget Sound Earthquakes, Seismological Society of America 2001 Annual Meeting, Special Session on the Nisqually Earthquake, V. 72, No. 3, p. 392
- Bakun, W.H., R.A. Haugerud, M.G. Hopper, and R.S. Ludwin, 2001 (abstract), The December 1872
   Washington State Earthquake, Seismological Society of America 2001 Annual Meeting, Seis.
   Res. Lett. V. 72, No. 2, p. 269
- Ludwin, R.S., 2001 (abstract), Searching for Native Stories about Cascadia Subduction Zone Earthquakes, Seismological Society of America 2001 Annual Meeting, Seis. Res. Lett. V. 72, No. 2, p. 270
- Crosson, R.S., K.C. Creager, S. Malone, G. Thomas, R. Ludwin, A. Qamar, 2001 (abstract), The Magnitude 6.8 Nisqually Earthquake of February 28, 2001: Seismological Aspects, Seismological Society of America 2001 Annual Meeting, Special Session on the Nisqually Earthquake, V. 72, No. 3, p. 394
- Frankel, A., D. Carver, S. Malone, G. Thomas, C. Weaver, C. Stephens, R. Porcella, H. Benz, J. Filson, I. Wong, T. Bice, R. Norris, M. Petersen, and S. Harmsen, 2001 (abstract), Overview of strong-motion recordings of the M6.8 Nisqually, Washington, earthquake, Seismological Society of America 2001 Annual Meeting, Special Session on the Nisqually Earthquake, V. 72, No. 3, p. 390
- Haugerud, R.A., G. Thomas, and S.P. Palmer, 2001 (abstract), Regional map view of instrumentallydetermined ground motions, Nisqually Earthquake of 28 February 2001, Seismological Society of America 2001 Annual Meeting, Special Session on the Nisqually Earthquake
- Crosson, R.S., and N.P. Symons, 2001 (abstract), What goes down, comes up: flexural origin of the Puget Basins and tectonic implications, V. 72, No. 2, p. 237
- McCrory, P.A., S.R. Walter, and R.S. Crosson, 2001 (abstract), Possible discontinuity in Juan de Fuca plate in the vicinity of the 2001 (M6.8) Nisqually earthquake, Seismological Society of America 2001 Annual Meeting, Special Session on the Nisqually Earthquake, V. 72, No. 3, p. 391
- Preston, L.A., K.C. Creager, R.S. Crosson, T.M. Van Wagoner, A.M. Trehu, T.M. Brocher, M.A. FISHER, and SHIPS Working Group, 2001 (abstract), Cascadia slab structure and deep earthquakes, V. 72, No. 2, p. 237
- Troost, K.G., R.A. Haugerud, T.J. Walsh, E.L. Harp, D.B. Booth, W.P. Steele, K.W. Wegmann, T.L. Pratt, B.S. Sherrod, and S. L. Kramer, 2001 (abstract), Ground failures produced by the Nisqually

earthquake, V. 72, No. 3, p. 396

Xu, Q., K.C. Creager, Q. Li, and R.S. CROSSON, 2001 (abstract), Seismological Society of America 2001 Annual Meeting, Special Session on the Nisqually Earthquake, V. 72, No. 3, p. 394

## **Theses and Dissertations**

Jeffrey B. Johnson, Interpretation of infrasound generated by erupting volcanoes and seismo-acoustic energy partitioning during strombolian explosions. PhD Dissertation, University of Washington, 2000

## **APPENDIX 3**

Reprint of: Preliminary Report on the Mw=6.8 Nisqually, Washington Earthquake of 28, February 2001 2001, SRL V. 72, N. 3, pp. 352-361.

# Preliminary Report on the $M_w = 6.8$ Nisqually, Washington Earthquake of 28 February 2001

## Staff of the Pacific Northwest Seismograph Network

Department of Earth and Space Sciences, University of Washington, Seattle U.S. Geological Survey, Seattle Office

## INTRODUCTION

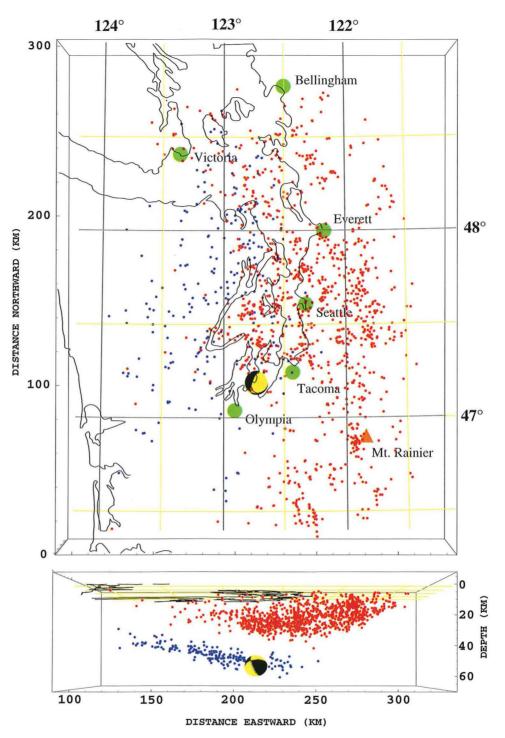
On Wednesday, 28 February 2001 at 10:54 PST (1854 UT) the Puget Sound region of western Washington State was shaken by a magnitude  $(M_{u})$  6.8 earthquake. Its epicenter was 47.159°N, 122.733°W and hypocenter was 51 km beneath the Nisqually River delta area, approximately 18 km northeast of Olympia, Washington. Damage from this earthquake had many similarities to damage noted for earthquakes in 1949 (M = 7.1) and in 1965 (M = 6.5). Damage included partial collapse of walls in unreinforced masonry buildings, particularly those on soft soil, lateral spreading and liquefaction in susceptible locations, and damage to unreinforced masonry chimneys. Because of the installation of modern digital strong-motion seismographs over the past few years the suite of strong-motion records for this event is extensive. Upgrades in the Pacific Northwest Seismograph Network's (PNSN) data acquisition and processing capabilities allowed for the rapid location and characterization of this earthquake and dissemination of information to the public in the minutes to hours following the event. The PANGA geodetic network detected coseismic permanent displacements at several sites that are consistent with the mechanism determined by both first-motion polarities and far-field moment-tensor solutions. The following is a preliminary report on seismic observations and geologic reconnaissance conducted during the first two weeks following the event.

## **TECTONIC SETTING**

Three general source zones are recognized in the Cascadia forearc region: (1) the plate interface zone, which is the site of an inferred megathrust earthquake approximately 300 years ago; (2) the intraslab (Wadati-Benioff) zone, which is a zone of eastward-dipping hypocenters at a depth of approximately 40 to 60 km beneath the central Puget basin: earthquakes occurring within the subducting Juan de Fuca Plate; and (3) the crustal zone, which could produce large shallow earthquakes such as an event inferred to have occurred approximately 1,100 years ago on the Seattle Fault. Although no significant earthquakes have been unequivocally identified with modern instrumentation as rupturing the plate interface, the second and third zones are quite active down to the threshold of detection capability of modern instruments deployed in the PNSN.

The Nisqually earthquake occurred in the eastward-dipping Wadati-Benioff intraslab zone (Figure 1), the site of most of the largest historically documented and recorded earthquakes in the region. Other historical earthquakes that have caused damage in Washington State bear similarities to the Nisqually event. A magnitude 6.2 event in 1939 and a magnitude 6.4 event in 1946 had epicentral locations within approximately 60 km of the Nisqually earthquake's epicenter, and both are believed to have been deep events within the Juan de Fuca Plate. The M7.1 Olympia earthquake of 1949 occurred within 20 km of the Nisqually earthquake (Baker and Langston, 1987) and could have ruptured the same fault. The 1965 magnitude 6.5 Seattle earthquake occurred about 40 km northeast of the Nisqually earthquake. In 1999, a M<sub>11</sub> 5.8 earthquake occurred near Satsop, Washington within the subducting Juan de Fuca Plate about 60 km to the west of the Nisqually earthquake.

Focal mechanisms of the 1949, 1965, 1976, and 1999 events are generally consistent with downdip extension in the subducted slab, with T axes trending eastward to eastsoutheastward. The regional network focal mechanism exhibits significant variation from the preliminary CMT solutions (e.g., Harvard and NEIC) for the Nisqually earthquake. This variation appears to be real and may result from changes in the mechanism during rupture. The regional net focal mechanism is remarkably similar to the focal mechanism derived by Baker and Langston (1987) for the 1949 event, although the location preferred by Baker and Langston (1987) lies approximately 20 km to the west of the Nisqually epicenter. The U.S. Coast and Geodetic Survey catalog epicenter for the 1949 earthquake is virtually identical to the Nisqually earthquake epicenter, suggesting that the 1949 and 2001 events may have ruptured the same fault. The larger slab earthquakes in this region occur near the downdip extent of regional seismicity (Figure 1). Recent tomography studies (Crosson et al., 2000) and earthquake locations (Ludwin et al., 1991) suggest that the slab deforms to steeper dip in this vicinity, although the slab seismicity diminishes dramatically to the east and provides weaker evidence for this deformation.


伪

y --- · ····

itaeolikaikeespaceraags f

energy and the second s

100moder#mmmoregibiel#



▲ Figure 1. Map (top) and cross-sectional (bottom) views of three-dimensional rectangular space containing the Nisqually earthquake hypocenter (yellow and black "beach ball") and high-quality hypocenters for 1,358 earthquakes used in 3D structure inversion in the greater Puget Sound vicinity. The edges of the 3D box are shown in perspective views with scaling in kilometers along edges and latitude/longitude lines in the map view. The preliminary Nisqually earthquake focal mechanism is shown as a true focal "ball" (convex) in correct 3D perspective views from above and looking from the south toward the north in the cross-sectional view at bottom. Hypocenters of events in the PNSN regional catalog, relocated with a 3D *P* velocity structural model derived from earthquake and SHIPS experiment observations, are shown with blue for intraslab events and with red for events in the continental crust. The focal mechanism of the Nisqually earthquake derived from regional network *P* polarity observations is well constrained and generally consistent with the CMT mechanisms derived from global observations in showing down-dip slab tension; however, the T axis of the regional net mechanism is rotated approximately 20° clockwise relative to the CMT mechanisms.

This figure can be viewed interactively in 3D using a Java-enabled browser. Please visit our Web site at http://www.geophys.washington.edu/SEIS/EQ\_Special/WEBDIR\_01022818543p/.

## GEOLOGY

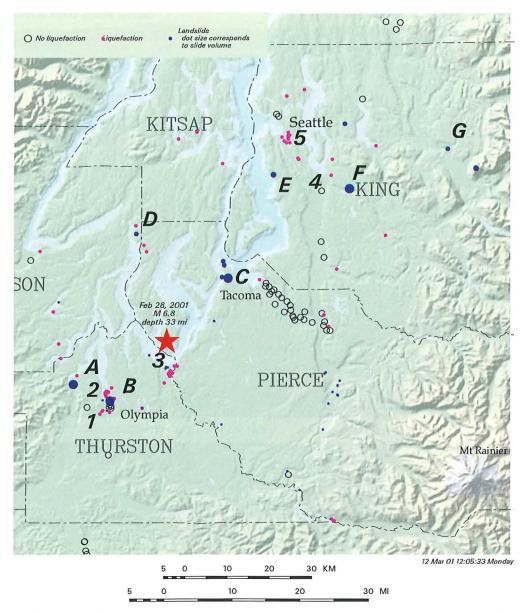
The near-surface geology of the Puget Lowland strongly influenced the pattern of ground motion and the distribution of damage caused by the Nisqually earthquake. Basement to the Puget Lowland is a complex patchwork of Eocene basalt of the Coast Range province, andesitic volcanic rocks and fluvial sedimentary rocks of the Challis province, and older metamorphic rocks overlain by Oligocene marine and Miocene fluvial strata of the Cascade forearc basin (Blunt *et al.*, 1987). Miocene and younger north-south shortening has formed large bedrock uplifts and basins as deep as 7 km (the Seattle basin). Tertiary bedrock is overlain by a complex, alternating, and incomplete sequence of glacial and nonglacial deposits. The present thickness of these deposits varies from zero to more than 1,000 m.

The current lowland landscape is largely a result of fluvial infilling and subsequent dissection, largely by subglacial meltwater, during the last glaciation (Booth, 1994). The large north-south troughs that confine Puget Sound, Hood Canal, Lake Washington, and the like were formed by subglacial erosion between about 18,000 and 15,000 years ago. Postglacial modification of the landscape has generally been minor, with the exception of fluvial deposition in some of the subglacial troughs. Such deposition has been most extensive along valleys that drain volcanoes of the Cascade Range. From an earthquake-hazards perspective, primary consequences of this history are (1) low-elevation (100-200 m) uplands of the Puget Lowland are largely overconsolidated by burial beneath as much as a kilometer of ice; (2) near-sealevel valley floors, such as Nisqually, Puyallup, and Duwamish, are underlain by thick, normally consolidated Holocene fluvial deposits; and (3) steep slopes along the margins of subglacial troughs, including most of the prime view properties in the region, are commonly underlain by a coarsening-upward clay-to-sand glacial advance outwash stratigraphy that creates a significant landslide potential.

Development of the ports of Seattle and Tacoma during the last 125 years was accompanied by extensive filling of tidal flats. Much of the Port of Seattle and industrial south Seattle lies on unengineered hydraulic fill that overlies poorly consolidated young estuarine sediments.

## **GEOLOGIC EFFECTS**

The damage produced by the Nisqually earthquake was strongly influenced by geological and geotechnical factors. Early reconnaissance efforts provided useful information on liquefaction and lateral spreading, landslides, and the performance of earth structures (Figure 2). In a manner consistent with liquefaction observations from past earthquakes, principally those of 1949 and 1965, liquefaction was most commonly observed in low-lying alluvial valleys, river deltas, and poorly compacted man-made fills. Overall, however, instances of liquefaction appeared to be considerably fewer than in 1965 and 1949 (Figure 2). Extensive liquefaction was observed in several localized areas. At the King County Airport (Boeing Field), which lies within the Duwamish River corridor south of downtown Seattle, extensive liquefaction was seen along the eastern runway, where zones of ejecta covered areas some 300 ft. long (Figure 3A). Numerous liquefaction features were also observed in the industrial area along the Duwamish River south of downtown Seattle. Lateral spreading was observed at a number of sites in the Olympia/Tumwater area. Several lateral spreads were observed along the banks of Capitol Lake south of downtown Olympia in patterns similar to what occurred in the 1949 and 1965 earthquakes.


Landslides occurred in the colluvial soils that mantle the slopes of many hills in the Puget Sound Basin. The frequency of occurrence of these slides was no doubt tempered by the extended period of unseasonably dry weather that preceded the earthquake. A significant landslide temporarily dammed the Cedar River in Renton; nearby construction equipment was quickly mobilized to breach the dam and divert the river from nearby homes.

## DAMAGE TO STRUCTURES

Damage to buildings, bridges, and lifelines varied across the region and was usually correlated with local soil conditions. The damage to buildings was almost exclusively nonstructural, with the majority occurring in unreinforced masonry buildings (Figure 3B). Damage patterns in this earthquake were similar to those in prior deep intraslab events. Specific locales that suffered damage both in this event and previous quakes included the Magnolia Bridge, Harbor Island, the Aqua Theater area near Greenlake, and Spokane Street bridges/ onramps, all in Seattle. In Olympia numerous buildings on the Washington State Capitol campus, several primarily unreinforced buildings, and the 4th Avenue Bridge were damaged.

Harborview Hospital in Seattle, the premier emergency care center for Washington, suffered some nonstructural damage but remained open. Harborview provided treatment for twenty-seven severe casualties, which included head injuries and crushing from falling bricks and collapsing chimneys. Fortunately, only one fatality (from heart attack) was reported. The official number of injuries was reported to be 396. Limited areas lost power, and there was some disruption of phone service due mainly to overload. Water and sewer service continued without major problems, although some of the overflow sewers in south Seattle are currently dry and may have problems that are not yet apparent.

The control tower at SeaTac Airport lost all its windows, closing SeaTac for several hours. Boeing Field, the closest back-up airport, is built on fill and was closed due to ground failure on the runways. Nonstructural (mainly) damage was noted at Boeing, Microsoft, the Starbucks building, the Port of Seattle, Amazon headquarters, UW campuses in Seattle and Tacoma, the King County Courthouse, and many other facilities throughout the area. Broken pipes exacerbated damage in some cases.



▲ Figure 2. Letters and numbers on the shaded relief topographic map are keyed to the descriptions of geological effects listed below. Landslides are indicated as blue symbols; liquefaction features are shown as magenta symbols. The size is proportional to the volume of material.

(A) 6 miles west of Olympia, part of the roadbed of four-lane US 101 liquefied and slid down a ravine, with the toe of the slide coming to rest on a frontage road. The slide volume was about 15,000 cubic meters.

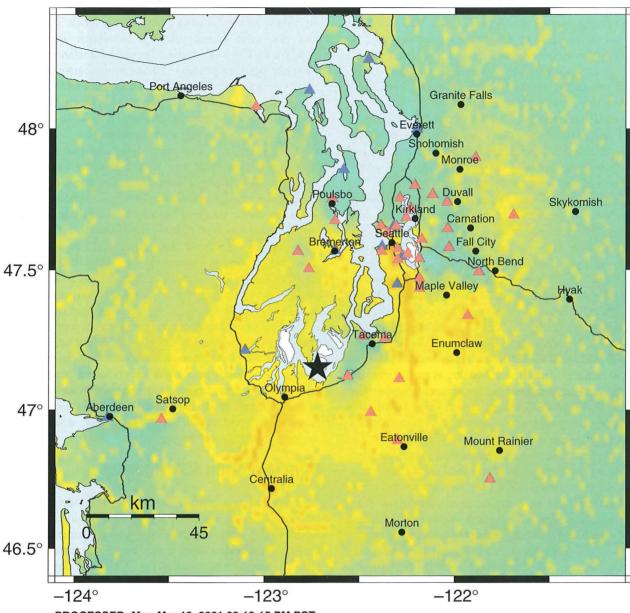
(B) In Olympia, the east shore of Capitol Lake failed in a large landslide/lateral spread. There was no damage to structures.

(C) At Salmon Beach (west Tacoma), a steep bluff failed and destroyed two homes. Six more homes are red-tagged (may not be occupied) because they are threatened by the remaining unstable slide mass. Total slide volume is about 15,000 cubic meters.

(D) Near Victor, 15 miles west of Tacoma, about 1,500 cubic meters of artificial fill beneath Hwy 302 failed. The road remains closed.

(E) In Burien (southwest Seattle), a pre-existing slide moved about a foot and has affected six homes.

(F) In Maple Valley (southeast of Seattle), a rapidly moving 2,000 cubic meter debris flow smashed a house. The occupant ran out of the house because of earthquake shaking—just before the slide hit. A nearby 5,000–10,000 cubic meter slide temporarily dammed the Cedar River and has apparently improved fish habitat.

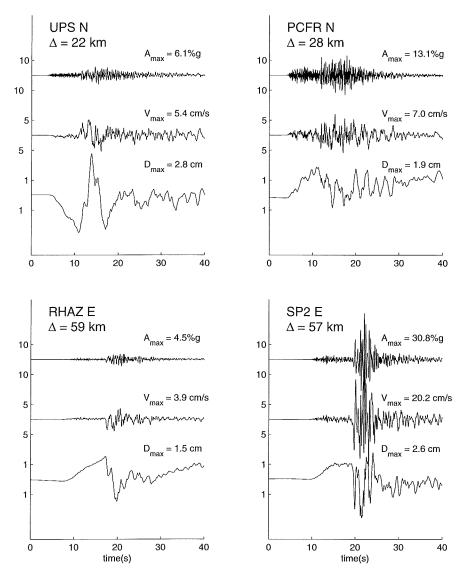

(G) Twenty miles east of Seattle, reactivation of a pre-existing slide closed Hwy 202 between North Bend and Fall City.

(1) In Olympia, extensive liquefaction along the west shore of Capitol Lake and elsewhere damaged roads, walkways, and a mobile-home park.

(2) Ten miles east of Olympia, extensive liquefaction at the Nisqually delta caused little damage. Much of the delta is wildlife refuge.

(3) Liquefaction and shaking damage have closed one of the buildings at Boeing's Renton plant, on the Cedar River delta southeast of Seattle.

(4) In south Seattle there was extensive liquefaction of artificial fill and natural deposits along the Duwamish River. The affected area comprises industrial, commercial, and residential properties; much of the Port of Seattle; railroad switching yards; and the King County Airport (Boeing Field). The north half of the airport runway is unusable because of liquefaction damage.

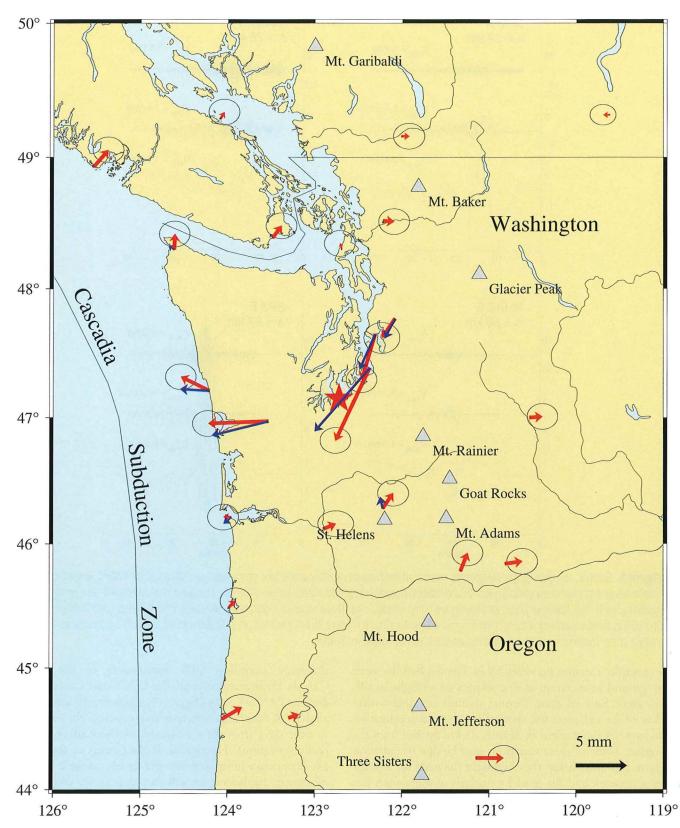



PNSN Rapid Instrumental Intensity Map Epicenter: 17.6 km NE of Olympia, WA Wed Feb 28, 2001 10:54:00 AM PST M 6.8 N47.15 W122.72 ID:0102281854

PROCESSED: Mon Mar 12, 2001 03:19:15 PM PST,

| PERCEIVED<br>SHAKING      | Not felt | Weak    | Light   | Moderate   | Strong | Very strong | Severe         | Violent | Extreme    |
|---------------------------|----------|---------|---------|------------|--------|-------------|----------------|---------|------------|
| POTENTIAL<br>DAMAGE       | none     | none    | none    | Very light | Light  | Moderate    | Moderate/Heavy | Heavy   | Very Heavy |
| PEAK ACC.(%g)             | <.17     | .17-1.4 | 1.4-3.9 | 3.9-9.2    | 9.2-18 | 18-34       | 34-65          | 65-124  | >124       |
| PEAK VEL.(cm/s)           | <0.1     | 0.1-1.1 | 1.1-3.4 | 3.4-8.1    | 8.1-16 | 16-31       | 31-60          | 60-116  | >116       |
| INSTRUMENTAL<br>INTENSITY | 1 40     | 11-111  | IV      | V          | VI     | VII         | VIII           | IX      | X+         |

▲ Figure 4. Instrumental intensity map produced by ShakeMap as recently imported from TriNet using forty-nine strong-motion stations from the PNSN (red triangles) and NSMP (blue triangles). This version of ShakeMap is preliminary since the attenuation relationship for a deep earthquake such as the Nisqually event is not properly handled and many site corrections for individual stations have not yet been confirmed and may be in error.




▲ Figure 5. Sample, on-scale, single-component records of the Nisqually earthquake at four strong-motion stations of the PNSN. Acceleration records have been integrated to produce velocity records and double integrated to produce displacement records. Pre-event baseline trends were removed prior to integration at each step. Maximum trace amplitudes are noted on each plot. These samples illustrate the variability of motion recorded at different stations. Station UPS is located just west of downtown Tacoma, and station PCFR is about 25 km due south of it. Stations RHAZ and SP2 are located on the east and west sides of the southern end of Lake Washington just south of downtown Seattle.

For example, a station on valley fill in Tacoma had the same peak ground acceleration as one station on stiff glacial tills 9 km away. Both of these Tacoma stations are sited within 35 km of the epicenter but showed less ground acceleration than some of the stations in Seattle, 25 km farther from the epicenter. Some of these variations may be due to radiation pattern, but nonetheless they highlight the need for a much denser network and the need for analysis of more than just the peak ground acceleration before general conclusions can be drawn (Figure 5).

## GEODESY

The Nisqually earthquake also produced measurable geodetic changes at the Earth's surface as determined using continuously recording GPS instruments in the Western Canada Deformation Array, the U.S. Coast Guard CORS, and the PANGA array (Figure 6). These results are based on analysis of data from twenty-two days before the earthquake to nine days after the earthquake (R. McCaffrey, personal communication). Horizontal displacements at the time of the earthquake of up to 8 mm can be seen at these sites. The estimated displacements will improve as we collect more "postseismic" GPS data. Figure 6 shows general agreement between the observations and displacements expected from a simple dislocation model of the earthquake based on the Harvard CMT solution for the focal mechanism. Currently, the geodetic data do not distinguish between two possible fault planes, and the moment of the earthquake adjusted to the observed displacements is about  $8.4 \times 10^{18}$  N-m, about



▲ Figure 6. Observed displacements (heavy arrows) and predicted displacements (thin arrows) as a result of the deep-focus Nisqually earthquake at continuously recording GPS stations. 2.5 sigma ellipses are also shown. The predicted displacements are consistent with an earthquake moment of 8.4×10<sup>18</sup> N-m, centroid depth of 53 km, strike of 3°, dip of 72° easterly, rake of 270°, down-dip width of 10 km, along-strike fault length of 30 km, and slip of 0.73 meters. Rigidity is taken to be 40 GPa. .

half the Harvard CMT value. There are also many campaign-style GPS sites in the epicentral region, and some of these were reoccupied in the first few days after the earthquake in a cooperative effort by the U.S. Geological Survey, Central Washington University, and the University of Washington. The full set of geodetic data may ultimately help to refine the source parameters for the Nisqually earthquake.

## REFERENCES

- Baker, G. E. and C. A. Langston (1987). Source parameters of the 1949 magnitude 7.1 south Puget Sound, Washington, earthquake as determined from long-period body waves and strong ground motions, *Bull. Seism. Soc. Am.* 77, 1,530–1,557.
- Blunt, D. J., D. J. Easterbrook, and N. W. Rutter (1987). Chronology of Pleistocene sediments in the Puget Lowland, Washington, Washington Div. Geology and Earth Resources Bull. 77, 321–353.

- Booth, D. B. (1994). Glaciofluvial infilling and scour of the Puget Lowland, Washington, during ice-sheet glaciation, *Geology* 22, 695–698.
- Crosson, R. S., N. P. Symons, T. Van Wagoner, G. F. Medema, K. C. Creager, L. A. Preston, T. M. Brocher, T. Parsons, M. Fisher, A. Trehu, K. Miller, and SHIPS Working Group (2000). 3-D velocity structure of the Cascadia forearc region from tomographic inversion: Results from full integration of data from multiple active source experiments and earthquake observations in Washington (abstract), *Eos, Trans. Amer. Geophys. U.* 81, F870.
- Ludwin, R. S., C. S. Weaver, and R. S. Crosson (1991). Seismicity of the Pacific Northwest, in Slemmons, D. B., M. D. Zoback, and D. D. Blackwell (editors), Decade of North American Geology, vol. GSMV-1, *Neotectonics of North America*, 77–98, Geol. Soc. Am., Boulder, CO.

This report was collated by Steve Malone from contributions from Bob Crosson, Ken Creager, Tony Qamar, George Thomas, Ruth Ludwin, Kathy Troost, Derek Booth, and Ralph Haugerud. 2 - re