## FINAL TECHNICAL REPORT: 2003 Name of Contractor: **University of Washington** **Principal Investigators:** S.D. Malone, R.S. Crosson, and A.I. Qamar Dept. of Earth and Space Sciences Box 351310 University of Washington Seattle, WA 98195-1310 Program objective number: I-1 Effective Date of J.O.A.: Dec. 1, 2000 Amount of J.O.A. 12/1/00-11/30/01: \$690,072. (\$529,164 plus supplement of \$160,908) 12/1/01-11/30/02: \$713,586. 12/1/02-11/30/03: \$729,127. TOTAL: \$2,132,785. Time Period Covered in Report: 1/1/03 - 12/31/03 **Date Report Submitted:** March 10, 2004 Research supported by the U.S. Geological Survey, Department of the Interior under USGS award number 01HQAG0011 The views and conclusions contained in this document are those of the authors, and should not be interpreted as necessarily representing the official policies, either express or implied, of the U.S. Government. ## TABLE OF CONTENTS | ABSTRACT AND NON-TECHNICAL SUMMARY | | |---------------------------------------------------------------------------|----| | SUMMARY | | | CURRENT INITIATIVES | | | Introduction | | | PNSN Instrumentation | | | Emergency Notifications | 2 | | EARTHWORM Progress Report | | | OPERATIONS | | | Seismometer Locations and Network Maintenance | | | Data Processing | 11 | | Publications | | | SEISMICITY, EMERGENCY NOTIFICATION, AND OUTREACH | 11 | | Seismicity | | | Public Information and Outreach | | | ACKNOWLEDGMENTS | | | APPENDIX 1 - Publications wholly or partially funded under this agreement | 15 | | APPENDIX 2 - PNSN Quarterly Reports 03-A, 03-B, 03-C, and 03-D | 17 | | | | | TABLES | | | TABLE 1A- Short-period Stations | 5 | | TABLE 1B Broad-Band Stations | | | TABLE 1C Strong-Motion Stations | | | TABLE 1C Strong-Motion Stations TABLE 2 Felt Earthquakes during 2003 | | | TABLE 3 Annual counts of events recorded by the PNSN, 1980-2003 | | | 17DEL 5 Annual counts of events recorded by the 11volv, 1700-2005 | | | FIGURES | | | Figure 1. Seismograph Stations. | 4 | | Figure 2. Seismicity 2003 | 12 | # FINAL TECHNICAL REPORT USGS Joint Operating Agreement 01HQAG0011 PACIFIC NORTHWEST SEISMOGRAPH NETWORK (PNSN) OPERATIONS ## ABSTRACT AND NON-TECHNICAL SUMMARY This is the final technical report for USGS Joint Operating Agreement 01HQAG0011 "Pacific Northwest Seismograph Network (PNSN) Operations". The PNSN operates seismograph stations in Washington and Oregon, and collects and analyzes earthquake data. Between Jan. 1, 2003 and Dec. 31, 2003 the PNSN analyzed 4,863 events. Of these, 1,978 were earthquakes located within the network. An additional 1,510 earthquakes within the network were too small to locate; including 478 low frequency events near the summit of Mt. Rainier (probably icequakes) and 625 surficial events near the summit of Mt. St. Helens, (probably rockfalls). West of 120.5 degrees west longitude, 1,746 earthquakes were located in Washington and Oregon (including 444 tectonic events in the general vicinity of Mount St. Helens). East of 120.5 degrees W longitude, 232 earthquakes were located. The remaining 1,375 events were located or unlocated blasts (488), regional earthquakes (290) or teleseisms (597). Between Jan. 1, 2003 and Dec. 31, 2003, 39 earthquakes were reported felt in Washington or Oregon west of the Cascades, ranging in magnitude from 1.6 to 4.8. Eight earthquakes (magnitudes 0.9 to 3.4) were reported felt east of the Cascades. ## **SUMMARY** USGS Joint Operating Agreement 01HQAG0011 "Pacific Northwest Seismograph Network (PNSN) Operations" covered network operations in western Washington and northern Oregon, routine data processing, and preparation of bulletins and reports. PNSN stations in southern and central Oregon were maintained by the University of Oregon under Cooperative Agreement 01HQAG0012, and this report also covers the work undertaken under that agreement. The objective of our work under this operating agreement was to gather seismic data, and to analyze and interpret them for use in evaluation of seismic and volcanic hazards in Washington and Oregon. This report includes an update on recent changes in our data acquisition and processing system, a review of station operations during 2003, an overview of our public information program, and a summary of 2003 seismicity. Annual reports for 2001 and 2002 cover operations and seismicity for those years. Since 1984, we have issued quarterly bulletins for all of Washington and Oregon. These include catalogs of earthquakes and blasts located in Washington and Oregon. ## **CURRENT INITIATIVES** ## Introduction The PNSN is continuing the long process of upgrading operations. Upgrades include enhancement of the emergency information distribution system, installation of seismic sensors that can accurately capture the full range of earthquake amplitudes and frequencies, implementation of a data recording system that fully supports multi-component data, and near-real-time data exchange with neighboring networks. ## PNSN Instrumentation Since 1996, the PNSN has installed digital strong-motion instruments, mostly in the Puget Sound urban area. There are now 51 ANSS instruments in the Pacific Northwest, and a total of 96 strong-motion real-time stations in our network. Data from strong-motion stations are sent continuously to the PNSN via Internet or lease-line modems, but the instruments also have a trigger set to record stronger events on-site. If continuous data transmission fails, the data will still be available via dial-up retrieval or site visit. Two additional dial-up stations are operated by the USGS in the Portland area. These are in addition to approximately 30 other strong-motion instruments operated independently by the National Strong Motion Project. The strong-motion installation priority during 2003 was an array across and along the Duwamish Valley near downtown Seattle. Liquefaction has occurred in the Duwamish during earthquakes in 1949, 1965, and 2001, and an instrumental record of the shaking that produces liquefaction is of interest for engineers. Deep layers of sediment below the valley may also amplify shaking; and the array is designed to sample sites on the valley floor as well as on harder ground on either side of the valley. Although there is no shortage of cooperative organizations and building owners, finding internet telemetry connections and obtaining long-term permits for these sites has proven to be challenging. We are making slow progress. This year one new CREST (Consolidated Reporting of EarthquakeS and Tsunamis) station was installed, near Liberty WA, bringing the total number of PNSN CREST stations to 16. The PNSN also receives 4 additional northern California CREST stations. ## **Emergency Notifications** A PNSN seismologist is always available on-call, and our standard procedure is to respond to pager messages from our automatic earthquake detection process (initiated for any earthquake within our network of magnitude 2.9 or larger), or calls from Washington or Oregon emergency management agencies or the UW police. Information for well-located earthquakes is sent out automatically by the event detection process to select recipients including QDDS system. Emergency managers and other high-priority information users receive very rapid notification through the RACE pager-PC system, faxes, e-mail, and the national QDDS earthquake message system. Simultaneously, an automatic website is created for the event. ## EARTHWORM Progress Report Data acquisition is divided among three computers; scossa, verme, and milli; which subsequently exchange and share the acquired data. Pigia is the digitizer for analog data. Prior to this year, a SUN-based SUNWORM system waggles was used to digitize data. However, waggles crashed hard in mid 2003. Pigia took over, but soon began crashing periodically with no diagnostics and had to be rebuilt. A remote digitizing "miniworm" computer scheduled for installation in Bend, OR was pressed into service at the University of Washington as a replacement. "Miniworm" systems (local nodes that digitize data and send it to the UW via Internet, eliminating expensive long-distance leased phone-lines) are running in Klamath Falls, OR (installed 4<sup>th</sup> quarter, 2002) and Forks, WA (installed 2<sup>nd</sup> quarter 2003), ## **OPERATIONS** ## Seismometer Locations and Network Maintenance Figure 1 shows seismograph stations operated by the PNSN at the end of 2003, when the PNSN EARTHWORM SYSTEM was digitally recording over 500 channels of real-time or near-real-time seismic data. Stations available include a total of 159 short-period stations, 37 broad-band, and 96 strong-motion stations. The Pacific Northwest Seismograph Network (PNSN) operates 171 short-period, broad-band, or strong-motion seismic stations west of 120 degrees west longitude under this agreement. The supported stations cover much of western Washington and Oregon, including the volcanoes of the central Cascades. Some stations include up to 7 components. PNSN stations in southern and central Oregon are maintained by the University of Oregon under Cooperative Agreement 01HQAG0012. Forty additional stations are operated under other support, and stations funded by other contracts or telemetered in real or near-real time from adjacent networks are also used in event locations. Station Tables 1A-1C list the locations of various types of stations. Quarterly reports provide additional details of station operation. Quarterly reports from January 1, 2003 through December, 2003 are included as Appendix 2. Aside from station outages, normal maintenance includes a visit to each site at least once every two years to replace batteries and do preventive maintenance. In addition seismometers must be replaced every 4-6 years. More than 30 radio telemetry relay sites are also maintained independently of the seismograph stations. Table 1A lists short-period, mostly vertical-component stations used in locating seismic events in Washington and Oregon. The first column in the table gives the 3-letter station designator, followed by a symbol designating the funding agency; stations marked by a percent sign (%) were supported by USGS joint operating agreement 01-HQ-AG-0011. A plus (+) indicates support under Pacific Northwest National Laboratory, Battelle contract 259116-A-B3. Stations designated "#" are USGS-maintained stations recorded at the PNSN. Stations designated by letters are operated by other networks, and telemetered to the PNSN. "M" stations are received from the Montana Bureau of Mines and Geology, "C" stations from the Canadian Pacific Geoscience Center, "U" stations from the US Geological Survey (usually USNSN stations), "N" stations from the USGS Northern California Network, and "H" stations from the Hanford Reservation via the Pacific Northwest National Labs. Other designations indicate support from other sources. Additional columns give station north latitude and west longitude (in degrees, minutes and seconds), station elevation in km, and comments indicating landmarks for which stations were named. Figure 1. Seismograph Stations. "BB" indicates broadband stations (Table 1B), "SMO" indicates strong motion stations (Table 1C), and "SPZ" indicates short-period stations (usually vertical component only) (Table 1A). Repeaters are sites with radio receivers and transmitters used in the transmission of seismic data to the UW via FM telemetry. "eworm" represents sites where a "mini-earthworm" system is running on a local computer to collect data for transfer to the UW via the Internet. **TABLE 1A - Short-period Stations** | STA | | | - Snort-period Sta | | TTT | NAMES | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|--------------------|-------------|-------|---------------------------------------| | ATES | STA | <u> </u> | | | | NAME | | ATES | | | | ······ | | | | AUG % 45 44 10.0 121 40 50.0 0.865 Augspurger Mm BBO % 42 53 12.6 122 40 46.6 1.671 Butler Butle, OR BEN H 46 31 12.0 119 43 18.0 0.335 PNNL station BEND % 44 04 00.8 121 19 36.0 - UO Bend Office, DOGAMI SMO BHW % 47 50 12.6 122 01 55.8 0.198 Bald Hill BLN % 48 00 26.5 122 81 8.6 0.585 Blyn Mt. BOW % 46 28 30.0 123 13 41.0 0.87 Boistfort Mt. BPO % 44 10 60.5 122 70 7.1 0.135 Bald Peter, OR BRO % 44 16 02.5 122 70 7.1 0.135 Big Rock Lookout, OR BRV + 46 29 07.2 119 59 28.2 0.92 BSMT M 47 51 04.8 114 47 13.2 1.95 Bassoo Peak, MT BUO % 42 16 42.5 122 14 43.1 1.797 Burton Butte, OR BWW + 46 48 39.5 119 52 56.4 0.67 Beverly CDF % 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chalan Butte, South CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mms. CPW % 46 68 07.0 122 30 21.0 0.62 Crazy Man Mt. CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mms. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Corfu DPW + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 115 0.4 122 09 00.0 1.609 East Dome, Mt. St. Helens ELL + 46 54 34 8. 118 5 5 15.0 0.286 Ellensburg EPH + 47 21 22.8 119 53 45.6 0.661 Ephrata ETT + 46 34 38.4 118 55 15.0 0.286 Ellensburg EFT + 46 34 38.4 118 55 15.0 0.286 Ellensburg EFT + 46 34 38.4 118 55 15.0 0.286 Ellensburg EFT + 46 34 38.4 118 55 15.0 0.286 Ellensburg EFT + 47 21 22.8 119 53 45.6 0.661 Ephrata ETT + 46 34 38.4 118 55 15.0 0.286 Ellensburg EFT + 47 21 22.8 119 35 45.6 0.661 Ephrata ETT + 46 35 54.0 119 27 35.4 0.33 6able Mountain GBB H + 40 35 54.0 119 27 35.4 0.33 Garison Hill GILL + 45 57 35.0 120 49 2.5 1 New Goldendale GILL + 45 57 35.0 120 49 2.5 1 New Goldendale GILC + 45 57 35.0 120 49 2.5 1 New Goldendale GILC + 45 57 35.0 120 49 2.5 1 New Goldendale GILC + 45 57 35.0 120 49 2.5 1 New Goldendale GILC + 45 57 35.0 120 49 2.5 1 New Goldendale GILC + 45 57 35.0 120 49 2.5 1 New Goldendale GILC + 45 57 35.0 120 49 2.5 1 New Goldendale GILC + 45 57 35.0 120 49 2.5 1 New Goldendale GILC + 45 57 35.0 120 49 2.5 1 New Goldendale GILC + 45 57 35.0 1 | | | | | | | | BBN | | | | | | | | BEND W 44 04 00.8 121 19 36.0 - UO Bend Office, DOGAMI SMO BHW % 47 50 12.6 122 10 15 5.8 0.198 Bald Hill BIAN % 48 00 26.5 122 58 18.6 0.585 Blyn Mt. BOW % 46 28 30.0 122 31 34 1.0 0.87 Boistfort Mt. BPO % 44 13 9 06.9 121 41 19.2 1.957 Bald Peter, OR BRO W 44 16 02.5 122 27 07.1 0.135 Big Rock Lookout, OR BRV + 46 29 07.2 119 59 28.2 0.92 Black Rock Valley BSMT M 47 51 04.8 114 47 13.2 1.95 Bassoo Peak, MT BUO % 42 16 42.5 122 14 43.1 1.797 Button Butte, OR CED W 44 16 02 07.2 119 59 28.2 0.92 Black Rock Valley BSMT M 47 51 04.8 114 47 13.2 1.95 Bassoo Peak, MT BUO % 42 16 42.5 119 52 56.4 0.67 Beverly CED W 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chamberlain Mtn, MT CMM % 46 26 07.0 122 30.2 10.0 6.2 Crazy Man Mt. CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CFF + 46 49 30.0 119 23 13.2 0.189 DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 88.8 0.789 Dyer Hill 2 ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Dyer Hill 2 ETW + 47 36 15.6 120 19 56.4 1.477 Entitle Flat Flat Shall Shal | | | | | | | | BEND % 44 04 00.8 121 19 36.0 - UO Bend Office, DOGAMI SMO BHW % 47 50 12.6 122 01 55.8 0.198 Bald Hill BLN % 48 00 26.5 122 258 18.6 0.585 Blyn Mt. BOW % 46 28 30.0 123 13 41.0 0.87 Boistfort Mt. BPO % 44 39 06.9 121 41 19.2 1.957 Bald Peter, OR BRO % 44 16 02.5 122 27 07.1 0.135 Big Rock Lookout, OR BRV + 46 29 07.2 119 59 28.2 0.92 Black Rock Valley BSMT M 47 51 04.8 114 47 13.2 1.95 Bassor Deak, MT BUO % 42 16 42.5 122 14 43.1 1.797 Button Butte, OR BVW + 46 48 39.5 119 52 56.4 0.67 Beverly CDF % 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chamberlain Mtn, MT CMW % 46 26 07.0 122 30 21.0 0.62 Crazy Man Mt. CLMW % 46 25 5.3 122 07 08.4 1.19 CLMW Ms. CCPW % 46 85 25.3 122 07 08.4 1.19 CLMW Ms. CCPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Corfu DPW + 47 59 16.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 11 50.4 122 02 27.0 1.27 0.122 0.892 Davenport DPY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 18 20.0 122 20 27.0 1.27 CELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata EFT + 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) EFT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) EFT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) EFT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) EFT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) EFT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 118 56 15.0 0.236 Eltopia (replaces ET2) ERT FRE H 46 34 38.4 11 | | | | | | | | BHW % 47 50 12.6 122 01 55.8 0.198 Bald Hill BLN % 48 00 26.5 122 58 18.6 0.585 Blyn Mt. BOW % 46 28 30.0 123 13 41.0 0.87 Boistfort Mt. BPO % 44 39 06.9 121 41 19.2 1.957 Bald Peter, OR BRO % 44 10 02.5 122 27 07.1 0.135 Big Rock Lookout, OR BRV + 46 29 07.2 119 59 28.2 0.92 Black Rock Valley BSMT M 47 51 04.8 11447 13.2 1.95 Bassoo Peak, MT BUO % 42 16 42.5 122 14 43.1 1.797 BVW + 46 48 39.5 119 52 56.4 0.67 Beverly CBS + 47 48 17.4 120 02 30.0 1.067 Chelan Butte, OR CDF % 46 07 01.4 122 02 42.1 0.756 CHMT M 46 54 51.0 113 15 07.0 - Chamberlain Mtn, MT CMM % 46 26 07.0 122 30 21.0 0.62 Crazy Man Mt. CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 11 50.4 122 09 70.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 FHE + 46 35 54.0 112 21 10.1 378 Flat Top 2 FMW % 46 58 29.6 121 40 11.3 1.859 FMW % 46 58 29.6 121 40 11.3 1.859 GBL + 46 35 54.0 119 27 35.4 0.33 GBL + 46 35 54.0 119 27 35.4 0.33 GBL + 46 35 54.0 119 27 35.4 0.33 GBL + 46 35 54.0 119 27 35.4 0.33 GBL + 46 35 54.0 119 27 35.4 0.33 GBU - 47 02 30.0 122 16 21.0 0.268 GBW % 47 32 52.5 122 47 10.8 0.606 GBW % 48 07 05.0 121 08 12.0 2.354 GBW % 47 32 52.5 122 47 10.8 0.606 GBW % 48 07 05.0 121 08 12.0 2.354 GBW % 47 32 52.5 122 47 10.8 0.606 GBW % 47 38 54.6 123 03 15.2 1 10.066 GBW % 47 38 54.6 123 03 15.2 1 10.066 GBW % 47 38 54.6 123 03 15.2 1 10.066 GBW % 47 38 54.6 123 03 15.2 1 10.066 GBW % 47 38 54.6 123 03 15.2 1 10.066 GBW % 47 38 54.6 123 03 15.2 1 10.066 GBW % 42 14 32.7 1 124 2 | | | | | 0.335 | | | BLN | | | | | - | | | BOW % 46 28 30.0 123 13 41.0 0.87 Boistfort Mt. BPO % 44 39 06.9 121 41 19.2 1.957 Bald Peter, OR BRO % 44 16 02.5 122 27 07.1 0.135 Big Rock Lookout, OR BRV + 46 29 07.2 119 59 28.2 0.92 Black Rock Valley BSMT M 47 51 04.8 114 47 13.2 1.95 Bassoo Peak, MT BUO % 42 16 42.5 122 14 43.1 1.797 Burton Butte, OR BVW + 46 48 39.5 119 52 56.4 0.67 Beverly CBS + 47 48 17.4 120 02 30.0 1.067 Chelan Butte, South CDF % 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chamberlain Mtn, MT CMM % 46 26 07.0 122 30 21.0 0.62 Crazy Man Mt. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Corfu DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 11 50.4 122 09 00.0 1.609 East Dome, Mt. St. Helens ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg ETT + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETT + 47 36 15.6 120 19 56.4 1.47 Entiat ETT + 47 36 15.6 120 19 56.4 1.47 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FHE + 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 11 24 4.0 122 06 01.8 1.642 Frissel Point, OR FRIS % 46 32 3.6 121 36 34.3 1.305 Glabe Mountain GBB H 46 36 51.8 119 37 40.2 0.185 PNNL Station GBB H 46 35 54.0 119 27 35.4 0.33 Gable Mountain GGL + 45 73 50.0 120 49 22.5 1 New Goldendale GLK % 46 32 37.6 121 36 34.3 1.305 Glacer Peak GMW % 47 32 20.0 122 16 21.0 0.268 Garrison Hill GLZ + 45 73 50.0 120 49 22.5 1 New Goldendale GLK % 46 32 37.6 121 36 34.3 1.305 Glacer Peak GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GMW % 47 38 54.6 123 30 31 5.2 1.006 Hoodsport HOO % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HDO % 43 31 33.0 123 054.0 1.00 Harness Mountain, OR | | | | | | | | BPO % 44 39 06.9 12 1 41 19.2 1.957 Bald Peter, OR BRO % 44 16 02.5 122 27 07.1 0.135 Big Rock Lookout, OR BRV + 46 29 07.2 119 59 28.2 0.92 Black Rock Valley BSMT M 47 51 04.8 114 47 13.2 1.95 Bassoo Peak, MT BUO % 42 16 42.5 122 14 43.1 1.797 Burton Butte, OR BVW + 46 48 39.5 119 52 56.4 0.67 Beverly CBS + 47 48 17.4 120 02 30.0 1.067 Chelan Butte, South CDF % 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chamberlain Mtn, MT CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Deverly </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> | | | | | | • | | BRO % 44 16 02.5 122 27 07.1 0.135 Big Rock Lookout, OR BRW + 46 29 07.2 119 59 28.2 0.92 Black Rock Valley BSMT M 47 51 04.8 114 47 13.2 1.95 Bassoo Peak, MT BUO % 42 16 42.5 122 14 43.1 1.797 Burton Butte, OR BVW + 46 48 39.5 119 52 56.4 0.67 Beverly CBS + 47 48 17.4 120 02 30.0 1.067 Chelan Butte, South CDF % 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chamberlain Mtn, MT CMM % 46 58 25.8 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Dorft DPW + 47 52 14.3 118 12 10.2 0.892 Davemport | | | | | | | | BRV + 46 29 07.2 119 59 28.2 0.92 Black Rock Valley BSMT M 47 51 04.8 114 47 13.2 1.95 Bassoo Peak, MT BVO % 42 16 42.5 122 14 43.1 1.97 Burton Butte, OR BVW + 46 48 39.5 119 52 56.4 0.67 Beverly CBS + 47 48 17.4 120 02 30.0 1.067 Chelan Butte, South CDF % 460 70 01.4 122 02 24.1 0.756 Cedar Flats CHMT M 46 24 51.0 113 15 07.0 - Chamberlain Mtn, MT CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Oxfu DY2 + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 | | | | | | | | BSMT M 47 51 04.8 114 47 13.2 1.95 Bassoo Peak, MT BUO % 42 16 42.5 122 14 43.1 1.797 Burton Butte, OR BVW + 46 48 39.5 119 52 56.4 0.67 Beverly CBS + 47 48 17.4 120 02 30.0 1.067 Chelan Butte, South CDF % 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chamberlain Mtn, MT CMM % 46 26 07.0 122 30 21.0 0.62 Crazy Man Mt. CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Corfu DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 11 50.4 122 09 00.0 1.609 East Dome, Mt. St. Helens ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FTL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GHZ H 46 55 52.0 120 19 5.4 1.00 1.85 PNNL Station GHW % 47 02 30.0 121 120 120 2.354 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Garrison Hill GLZ + 45 57 35.0 120 49 22.5 1 New Goldendale GMW % 47 02 30.0 121 16 12.0 2.354 Glacier Peak GMW % 47 02 30.0 121 16 12.0 2.354 Glacier Peak GMW % 47 02 30.0 121 16 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GMU % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GWU % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GWU % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HBO % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | BUO % 42 16 42.5 122 14 43.1 1.797 Burton Butte, OR BVW + 46 48 39.5 119 52 56.4 0.67 Beverly CBS + 47 48 17.4 120 02 30.0 1.067 Chelan Butte, South CDF % 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chamberlaim Mn, MT CMW % 46 26 07.0 122 30 21.0 0.62 Crazy Man Mt. CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 93 0.0 119 23 13.2 0.189 Corfu DPW + 47 52 16.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 11 50.4 122 09 00.0 1.609 East Dome, Mt. St. Helens ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock | | | | | | • | | BVW | | | | | | | | CBS + 47 48 17.4 120 02 30.0 1.067 Chelan Butte, South CDF % 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chamberlain Mtn, MT CMW % 46 26 07.0 122 30 21.0 0.62 Crazy Man Mt. CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Corfu DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 50 66.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.61 Ephrata ETT | | | | | | | | CDF % 46 07 01.4 122 02 42.1 0.756 Cedar Flats CHMT M 46 54 51.0 113 15 07.0 - Chamberlain Mtn, MT CMM % 46 26 07.0 122 30 21.0 0.62 Crazy Man Mt. CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Davenport DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DPV2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 18 20.0 122 20 07.0 1.609 East Dome, Mt. St. Helens ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 36 15.6 120 35 45.6 0.661 Elphrata <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | CHMT M 46 54 51.0 113 15 07.0 Chamberlain Mtn, MT CMM % 46 26 07.0 122 30 21.0 0.62 Crazy Man Mt. CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Corfu DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 11 50.4 122 09 00.0 1.609 East Dome, Mt. St. Helens ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.601 Ephrata ET3 + 46 53 43.4 118 50 15.0 0.286 Eltopia (replaces ET2) ETW | | | | | | | | CMM % 46 26 07.0 122 30 21.0 0.62 Crazy Man Mt. CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mms. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Corfu DPW + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 11 50.4 122 09 00.0 1.609 East Dome, Mt. St. Helens ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East | | | | | 0.756 | | | CMW % 48 25 25.3 122 07 08.4 1.19 Cultus Mtns. CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Ozorfu DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW | | | | | | | | CPW % 46 58 25.8 123 08 10.8 0.792 Capitol Peak CRF + 46 49 30.0 119 23 13.2 0.189 Corfu DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Hat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS | | | | | | | | CRF + 46 49 30.0 119 23 13.2 0.189 Corfu DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ETW + 47 36 15.6 120 19 56.4 1.477 Entiat ETW + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 26 01.8 1.642 Frissel Point, OR GBB <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | DPW + 47 52 14.3 118 12 10.2 0.892 Davenport DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 11 50.4 122 09 00.0 1.609 East Dome, Mt. St. Helens ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 45 62 9.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | DY2 + 47 59 06.6 119 46 16.8 0.89 Dyer Hill 2 EDM % 46 11 50.4 122 09 00.0 1.609 East Dome, Mt. St. Helens ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 35 54.0 119 27 35.4 0.33 Gable Mountain | | | | | | | | EDM % 46 11 50.4 122 09 00.0 1.609 East Dome, Mt. St. Helens ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | ELK % 46 18 20.0 122 20 27.0 1.27 Elk Rock ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 35 1.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill | | | | | | • | | ELL + 46 54 34.8 120 33 58.8 0.789 Ellensburg EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW 47 02 30.0 122 16 21.0 0.268 Garrison Hill GLZ + 45 57 35.0 120 49 22.5 1 New Goldendale GLK <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | EPH + 47 21 22.8 119 35 45.6 0.661 Ephrata ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamker Mt., OR HBO % 43 30 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | ET3 + 46 34 38.4 118 56 15.0 0.286 Eltopia (replaces ET2) ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 30 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | ETW + 47 36 15.6 120 19 56.4 1.477 Entiat FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | FHE + 46 57 06.9 119 29 49.0 0.455 Frenchman Hills East FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR | | | | | | | | FL2 % 46 11 47.0 122 21 01.0 1.378 Flat Top 2 FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. | | | | | | | | FMW % 46 56 29.6 121 40 11.3 1.859 Mt. Fremont FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. | | | | | | | | FRIS % 44 12 44.0 122 06 01.8 1.642 Frissel Point, OR GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></t<> | | | | | | - | | GBB H 46 36 31.8 119 37 40.2 0.185 PNNL Station GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR | | | | | | | | GBL + 46 35 54.0 119 27 35.4 0.33 Gable Mountain GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR | | | | | | · · · · · · · · · · · · · · · · · · · | | GHW % 47 02 30.0 122 16 21.0 0.268 Garrison Hill GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | GL2 + 45 57 35.0 120 49 22.5 1 New Goldendale GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR | | | | | | | | GLK % 46 33 27.6 121 36 34.3 1.305 Glacier Lake GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | GMO % 44 26 20.8 120 57 22.3 1.689 Grizzly Mountain, OR GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | GMW % 47 32 52.5 122 47 10.8 0.506 Gold Mt. GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | GPW % 48 07 05.0 121 08 12.0 2.354 Glacier Peak GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | · · · · · · · · · · · · · · · · · · · | | GSM % 47 12 11.4 121 47 40.2 1.305 Grass Mt. GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | GUL % 45 55 27.0 121 35 44.0 1.189 Guler Mt. H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | H2O H 46 23 44.5 119 25 22.7 0.175 Water PNNL Station HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | HAM % 42 04 08.3 121 58 16.0 1.999 Hamaker Mt., OR HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | HBO % 43 50 39.5 122 19 11.9 1.615 Huckleberry Mt., OR HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | HDW % 47 38 54.6 123 03 15.2 1.006 Hoodsport HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | | | HOG % 42 14 32.7 121 42 20.5 1.887 Hogback Mtn., OR HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | * ' | | HSO % 43 31 33.0 123 05 24.0 1.02 Harness Mountain, OR | | | | | | • | | | | | | | | | | HSR % 46 10 28.0 122 10 46.0 1.72 South Ridge, Mt. St. Helens | | | | | | | | | HSR | % | 46 10 28.0 | 122 10 46.0 | 1.72 | South Ridge, Mt. St. Helens | **TABLE 1A - Short-period Stations** | TABLE 1A - Short-period Stations | | | | | | | | | |----------------------------------|---------|------------------|------------------|-------|-----------------------------|--|--|--| | STA | F | LAT | LONG | EL | NAME | | | | | | | (deg. min. sec.) | (deg. min. sec.) | (km) | | | | | | HTW | % | 47 48 14.2 | 121 46 03.5 | 0.833 | Haystack Lookout | | | | | HUO | % | 44 07 10.9 | 121 50 53.5 | 2.037 | Husband OR (UO) | | | | | IRO | % | 44 00 19.0 | 122 15 15.4 | 1.642 | Indian Ridge, OR | | | | | ЈВО | + | 45 27 41.7 | 119 50 13.3 | 0.645 | Jordan Butte, OR | | | | | JCW | % | 48 11 42.7 | 121 55 31.1 | 0.792 | Jim Creek | | | | | JUN | % | 46 08 50.0 | 122 09 04.4 | 1.049 | June Lake | | | | | KMO | % | 45 38 07.8 | 123 29 22.2 | 0.975 | Kings Mt., OR | | | | | KOS | % | 46 27 46.7 | 122 11 41.3 | 0.61 | Kosmos | | | | | KTR | N | 41 54 31.2 | 123 22 35.4 | 1.378 | CAL-NET | | | | | LAB | % | 42 16 03.3 | 122 03 48.7 | 1.774 | Little Aspen Butte, OR | | | | | LAM | N | 41 36 35.2 | 122 37 32.1 | 1.769 | CAL-NET | | | | | LCCM | M | 45 50 16.8 | 111 52 40.8 | 1.669 | Lewis and Clark Caverns, MT | | | | | LCW | % | 46 40 14.4 | 122 42 02.8 | 0.396 | Lucas Creek | | | | | LMW | % | 46 40 04.8 | 122 17 28.8 | 1.195 | Ladd Mt. | | | | | LNO | + | 45 52 18.6 | 118 17 06.6 | 0.771 | Lincton Mt., OR | | | | | LO2 | % | 46 45 00.0 | 121 48 36.0 | 0.853 | Longmire | | | | | LOC | + | 46 43 01.2 | 119 25 51.0 | 0.21 | Locke Island | | | | | LVP | % | 46 03 58.0 | 122 24 02.6 | 1.13 | Lakeview Peak | | | | | MBW | % | 48 47 02.4 | 121 53 58.8 | 1.676 | Mt. Baker | | | | | MCMT | M | 44 49 39.6 | 112 50 55.8 | 2.323 | McKenzie Canyon, MT | | | | | MCW | % | 48 40 46.8 | 122 49 56.4 | 0.693 | Mt. Constitution | | | | | MDW | + | 46 36 47.4 | 119 45 39.6 | 0.33 | Midway | | | | | MEW | % | 47 12 07.0 | 122 38 45.0 | 0.097 | McNeil Island | | | | | MJ2 | + | 46 33 27.0 | 119 21 32.4 | 0.146 | May Junction 2 | | | | | MOON | % | 44 03 05.5 | 121 40 05.5 | 2.27 | Moon Mt, OR | | | | | MOX | + | 46 34 38.4 | 120 17 53.4 | 0.501 | Moxie City | | | | | MPO | % | 44 30 17.4 | 123 33 00.6 | 1.249 | Mary's Peak, OR | | | | | MTM | % | 46 01 31.8 | 122 12 42.0 | 1.121 | Mt. Mitchell | | | | | NAC | + | 46 43 59.4 | 120 49 25.2 | 0.728 | Naches | | | | | NCO | % | 43 42 14.4 | 121 08 18.0 | 1.908 | Newberry Crater, OR | | | | | NEL | + | 48 04 12.6 | 120 20 24.6 | 1.503 | Nelson Butte | | | | | NLO | % | 46 05 21.9 | 123 27 01.8 | 0.826 | Nicolai Mt., OR | | | | | OBC | % | 48 02 07.1 | 124 04 39.0 | 0.938 | Olympics - Bonidu Creek | | | | | OBH | % | 47 19 34.5 | 123 51 57.0 | 0.383 | Olympics - Burnt Hill | | | | | OCP | % | 48 17 53.5 | 124 37 30.0 | 0.487 | Olympics - Cheeka Peak | | | | | OD2 | /0<br>+ | 47 23 15.6 | 118 42 34.8 | 0.467 | Odessa site 2 | | | | | ON2 | % | 46 52 50.8 | 123 46 51.8 | 0.353 | Olympics - North River | | | | | OOW | % | 47 44 03.6 | 124 11 10.2 | 0.257 | Octopus West | | | | | | | 47 48 59.2 | 123 42 13.7 | 2.008 | Olympics - Snow Dome | | | | | OSD | % | | | | | | | | | OSR | % | 47 30 20.3 | 123 57 42.0 | 0.815 | Olympics Salmon Ridge | | | | | OT3 | + | 46 40 08.4 | 119 13 58.8 | 0.322 | New Othello (replaces OT2) | | | | | OTR | % | 48 05 00.0 | 124 20 39.0 | 0.712 | Olympics - Tyee Ridge | | | | | PAT | + | 45 52 55.2 | 119 45 08.4 | 0.262 | Paterson ANGG GMG | | | | | PCFR | % | 46 59 23.3 | 122 26 27.4 | 0.137 | PC Firing Range ANSS-SMO | | | | | PCMD | % | 46 53 20.9 | 122 18 00.9 | 0.239 | PC Mt. Detachment ANSS-SMO | | | | | PGO | % | 45 27 42.6 | 122 27 11.5 | 0.253 | Gresham, OR | | | | | PGW | % | 47 49 18.8 | 122 35 57.7 | 0.122 | Port Gamble | | | | | PRO | + | 46 12 45.6 | 119 41 08.4 | 0.553 | Prosser | | | | | RCM | % | 46 50 08.9 | 121 43 54.4 | 3.085 | Mt. Rainier, Camp Muir | | | | | RCS | % | 46 52 15.6 | 121 43 52.0 | 2.877 | Mt. Rainier, Camp Schurman | | | | | RED | Н | 46 17 51.0 | 119 26 15.6 | 0.33 | Red Mountain PNNL Station | | | | | RER | % | 46 49 09.2 | 121 50 27.3 | 1.756 | Mt. Rainier, Emerald Ridge | | | | **TABLE 1A - Short-period Stations** | STA | F | LAT | LONG | EL | NAME | |------------|--------|------------------|------------------|-------|--------------------------------| | <u>SIA</u> | F. | (deg. min. sec.) | | (km) | 1VAUE | | DMW | 0/ | 47 27 35.0 | (deg. min. sec.) | | Pottloanska Mt (Wort) | | RMW | %<br>% | | 121 48 19.2 | 1.024 | Rattlesnake Mt. (West) | | RNO | | 43 54 58.9 | 123 43 25.5 | 0.85 | Roman Nose, OR | | RPW | % | 48 26 54.0 | 121 30 49.0 | 0.85 | Rockport | | RRHS | % | 46 47 58.6 | 123 02 25.4 | 0.047 | Rochester HS ANSS-SMO | | RSW | + | 46 23 40.2 | 119 35 28.8 | 1.045 | Rattlesnake Mt. (East) | | RVC | % | 46 56 34.5 | 121 58 17.3 | 1 | Mt. Rainier - Voight Creek | | RVW | % | 46 08 53.2 | 122 44 32.1 | 0.46 | Rose Valley | | SAW | + | 47 42 06.0 | 119 24 01.8 | 0.701 | St. Andrews | | SBES | % | 48 46 05.9 | 122 24 54.2 | 0.119 | Silver Beach ES ANSS-SMO | | SEA | % | 47 39 15.8 | 122 18 29.3 | 0.03 | UW Seattle (Wood Anderson BB) | | SEP | # | 46 12 00.7 | 122 11 28.1 | 2.116 | September lobe, Mt. St. Helens | | SFER | % | 47 37 10.4 | 117 21 55.7 | 0.715 | Spokane Schools, Ferris High | | SHW | % | 46 11 37.1 | 122 14 06.5 | 1.425 | Mt. St. Helens | | SLF | % | 47 45 32.0 | 120 31 40.0 | 1.75 | Sugar Loaf | | SMW | % | 47 19 10.7 | 123 20 35.4 | 0.877 | South Mtn. | | SNI | H | 46 27 50.4 | 119 39 35.1 | 0.323 | Snively PNNL station | | SOS | % | 46 14 38.5 | 122 08 12.0 | 1.27 | Source of Smith Creek | | SSO | % | 44 51 21.6 | 122 27 37.8 | 1.242 | Sweet Springs, OR | | STD | % | 46 14 16.0 | 122 13 21.9 | 1.268 | Studebaker Ridge | | stw | % | 48 09 03.1 | 123 40 11.1 | 0.308 | Striped Peak | | SVOH | % | 48 17 21.8 | 122 37 54.8 | 0.022 | Skagit Valley CC ANSS-SMO | | TBM | + | 47 10 12.0 | 120 35 52.8 | 1.006 | Table Mt. | | TDH | % | 45 17 23.4 | 121 47 25.2 | 1.541 | Tom,Dick,Harry Mt., OR | | TDL | % | 46 21 03.0 | 122 12 57.0 | 1.4 | Tradedollar Lake | | TRW | + | 46 17 32.0 | 120 32 31.0 | 0.723 | Toppenish Ridge | | TWW | + | 47 08 17.4 | 120 52 06.0 | 1.027 | Teanaway | | VBE | % | 45 03 37.2 | 121 35 12.6 | 1.544 | Beaver Butte, OR | | VCR | % | 44 58 58.2 | 120 59 17.4 | 1.015 | Criterion Ridge, OR | | VDB | C | 49 01 34.0 | 122 06 10.1 | 0.404 | Canada | | VFP | % | 45 19 05.0 | 121 27 54.3 | 1.716 | Flag Point, OR | | VG2 | % | 45 09 20.0 | 122 16 15.0 | 0.823 | Goat Mt., OR | | VGB | + | 45 30 56.4 | 120 46 39.0 | 0.729 | Gordon Butte, OR | | VGZ | C | 48 24 50.0 | 123 19 27.8 | 0.067 | Canada | | VIP | % | 44 30 29.4 | 120 37 07.8 | 1.731 | Ingram Pt., OR | | VLL | % | 45 27 48.0 | 121 40 45.0 | 1.195 | Laurance Lk., OR | | VLM | % | 45 32 18.6 | 122 02 21.0 | 1.15 | Little Larch, OR | | VSP | % | 42 20 30.0 | 121 57 00.0 | 1.539 | Spence Mtn, OR | | VT2 | + | 46 58 02.4 | 119 59 57.0 | 0.385 | Vantage2 | | VTH | % | 45 10 52.2 | 120 33 40.8 | 0.773 | The Trough, OR | | WA2 | + | 46 45 19.2 | 119 33 56.4 | 0.244 | Wahluke Slope | | WAT | + | 47 41 55.2 | 119 57 14.4 | 0.821 | Waterville | | WIW | + | 46 25 45.6 | 119 17 15.6 | 0.128 | Wooded Island | | WPO | % | 45 34 24.0 | 122 47 22.4 | 0.334 | West Portland, OR | | WPW | % | 46 41 55.7 | 121 32 10.1 | 1.28 | White Pass | | WRD | + | 46 58 12.0 | 119 08 41.4 | 0.375 | Warden | | WRW | % | 47 51 26.0 | 120 52 52.0 | 1.189 | Wenatchee Ridge | | YA2 | + | 46 31 36.0 | 120 31 48.0 | 0.652 | Yakima | | YEL | # | 46 12 35.0 | 122 11 16.0 | 1.75 | Yellow Rock, Mt. St. Helens | | YPT | + | 46 02 55.8 | 118 57 44.0 | 0.325 | Yellepit | | 111 | , | 70 04 33.0 | 110 J/ TT.V | 0.343 | i enepit | Table 1B lists broad-band stations used in locating seismic events in Washington and Oregon, and Table 1C lists strong-motion stations. The format for station locations is the same for all station tables, as described above. **TABLE 1B - Broadband Stations** | STA | F | LAT | LONG | EL | NAME | |------|---|------------------|------------------|-------|--------------------------------| | | | (deg. min. sec.) | (deg. min. sec.) | (km) | | | BRKS | % | 47 45 19.1 | 122 17 17.9 | 0.02 | Brookside ANSS-SMO | | COR | U | 44 35 08.5 | 123 18 11.5 | 0.121 | Corvallis, OR USNSN | | DBO | % | 43 07 09.0 | 123 14 34.0 | 0.984 | Dodson Butte, OR UO CREST BB | | ELW | % | 47 29 39.4 | 121 52 17.2 | 0.267 | EchoLakeBPA BB-SMO-IDS20 | | ERW | % | 48 27 14.4 | 122 37 30.2 | 0.389 | Mt. Erie SMO-IDS24 BB | | EUO | % | 44 01 45.7 | 123 04 08.2 | 0.16 | Eugene, OR U0 CREST BB SMO | | GNW | % | 47 33 51.8 | 122 49 31.0 | 0.165 | Green Mt CREST BB SMO | | HAWA | U | 46 23 32.3 | 119 31 57.2 | 0.367 | Hanford Nike USNSN BB | | HEBO | % | 45 12 49.2 | 123 45 15.0 | 0.875 | Mt. Hebo, OR CREST BB SMO | | HLID | U | 43 33 45.0 | 114 24 49.3 | 1.772 | Hailey, ID USNSN BB | | HOOD | % | 45 19 17.8 | 121 39 07.8 | 1.52 | Mt Hood Mdws., OR CREST BB SMO | | HUMO | | 42 36 25.6 | 122 57 24.1 | 0.555 | Hull Mountain, OR BB from UCB | | KBO | N | 42 12 45.0 | 124 13 33.3 | 1.008 | Bosley Butte, OR CREST BB | | KEB | N | 42 52 20.0 | 124 20 03.0 | 0.818 | Edson Butte, OR CREST BB | | KRMB | N | 41 31 23.0 | 123 54 29.0 | 1.265 | Red Mtn, OR CREST BB | | KSXB | N | 41 49 51.0 | 123 52 33.0 | - | Camp Six, OR CREST BB | | LON | % | 46 45 00.0 | 121 48 36.0 | 0.853 | Longmire CREST BB LONLZ SMO | | LTY | % | 47 15 21.2 | 120 39 53.3 | 0.97 | Liberty BB CREST SMO | | MEGW | % | 46 15 57.4 | 123 52 38.2 | 0.332 | Megler, WA CREST BB SMO | | MOD | | 41 54 08.9 | 120 18 10.6 | 1.555 | Modoc Plateau, CA | | NEW | U | 48 15 50.0 | 117 07 13.0 | 0.76 | Newport Observatory USNSN BB | | OCWA | U | 47 44 56.0 | 124 10 41.2 | 0.671 | Octopus Mtn. USNSN BB | | OFR | % | 47 56 00.0 | 124 23 41.0 | 0.152 | OlympiRsrc. Center | | OPC | % | 48 06 01.0 | 123 24 41.8 | 0.09 | Olympic Penn College CREST BB | | OZB | С | 48 57 37.1 | 125 29 34.1 | 0.671 | Canada | | PFB | С | 48 34 30.0 | 124 26 39.8 | 0.465 | P.Renfrew, Canada | | PNLK | % | 47 34 54.5 | 122 02 01.0 | 0.128 | Pine Lake JH ANSS-SMO | | PNT | С | 49 18 57.6 | 119 36 57.6 | 0.55 | Canada BB | | SNB | С | 48 46 33.6 | 123 10 16.3 | 0.408 | Canada BB | | SP2 | % | 47 33 23.3 | 122 14 52.8 | 0.03 | Seward Park, Seattle SMO-IDS24 | | SQM | % | 48 04 39.0 | 123 02 44.0 | 0.03 | Sequim, WA CREST BB SMO | | TAKO | % | 43 44 36.6 | 124 04 52.5 | 0.046 | Tahkenitch, OR CREST BB SMO | | TOLO | % | 44 37 19.3 | 123 55 16.6 | 0.021 | Toledo BPA, OR CREST BB SMO | | TTW | % | 47 41 40.7 | 121 41 20.0 | 0.542 | Tolt Res, WA CREST BB SMO | | WVOR | U | 42 26 02.0 | 118 38 13.0 | 1.344 | Wildhorse Valley, OR USNSN BB | | YBH | | 41 43 55.3 | 122 42 37.4 | 1.06 | Yreka, CA from UCB | Table1C lists strong-motion, three-component stations operating in Washington and Oregon that provide data in real or near-real time to the PNSN. Several of these stations also have broad-band instruments, as noted. The "SENSOR" field designates what type of seismic sensor is used: A = Terra-Tech SSA-320 SLN triaxial accelerometer/Terra-Tech IDS24 A20 = Terra-Tech SSA-320 triaxial accelerometer/Terra-Tech IDS20 recording system FBA23 = Kinemetrics FBA23 accelerometers and Reftek recording system EPI = Kinemetrics Episensor accelerometers and Reftek recording system BB = Guralp CMG-40T 3-D broadband velocity sensor BB3 = Guralp CMG3T 3-D broadband velocity sensor BBZ = Broad Band sensor, PMD 2024, vertical component only K2 = Kinemetrics Episensor accelerometers and K2 recording system The "TELEMETRY" field indicates the type of telemetry used to recover the data: - D = dial-up, - E = continuously telemetered via Internet from a remote EARTHWORM system - I = continuously telemetered via Internet - L = continuously telemetered via dedicated lease-line telephone lines - P = continuously telemetered via dedicated lease-line telephone lines using PPP protocol - M = continuously telemetered via BPA microwave - R = continuously telemetered via spread-spectrum radio **TABLE 1C - Strong-motion three-component stations** | STA | F | LAT | LONG | EL | NAME | SENSOR | TEL. | |-------------|---------|------------------|------------------|-------|-----------------------------------------------|----------|---------| | | | (deg. min. sec.) | (deg. min. sec.) | (km) | | | | | ALCT | % | 47 38 48.8 | 122 2 15.7 | 0.055 | Alcott Elementary | K2 | I | | ALST | % | 46 6 32.3 | 123 1 58.5 | 0.198 | Alston | A20 | E,M | | ALVY | % | 43 59 53.2 | 123 0 57.0 | 0.155 | Alvey | K2 | E,M | | ATES | % | 48 14 10.9 | 122 3 33.0 | 0.062 | Trafton Elementary | K2 | I | | BABE | % | 47 36 21.0 | 122 32 7.0 | 0.083 | Blakely Elementary | K2 | I | | BEND | % | 44 4 0.8 | 121 19 36.0 | 0 | U of O Bend Field Office | K2 | I | | BEVT | % | 47 55 12.0 | 122 16 12.0 | 0.17 | Boeing Plant Everett | K2 | I | | BRKS | % | 47 45 19.1 | 122 17 17.9 | 0.02 | Brookside Elementary | K2,BBZ | I | | BULL | * | 45 26 45.8 | 122 9 16.9 | 0.222 | Bull Run Dam | A | I | | COLT | % | 45 10 13.1 | 122 26 12.8 | 0.213 | Colton High School | CMG5T | I | | CSO | # | 45 31 1.0 | 122 41 22.5 | 0.036 | Canyon | FBA23 | D | | DBO | % | 43 7 9.0 | 123 14 34.0 | 0.984 | Dodson Butte (CREST) | EPI,BB3 | E,L-PPP | | EARN | % | 47 44 27.2 | 122 2 37.7 | 0.159 | East Ridge Elementary | K2 | I | | <b>EGRN</b> | % | 47 4 24.0 | 122 58 41.0 | 0.057 | Evergreen State College | K2 | I | | ELW | % | 47 29 39.4 | 121 52 17.2 | 0.267 | Echo Lake | A,BB | D,M,L | | ERW | % | 48 27 14.4 | 122 37 30.2 | 0.389 | Mount Erie | A,BB | D,L,M | | EUO | % | 44 1 45.7 | 123 4 8.2 | 0.16 | Eugene Golf Course (CREST) | EPI,BB | E,L-PPP | | EVCC | % | 48 0 27.0 | 122 12 15.3 | 0.03 | Everett Community College | K2 | I | | EVGW | % | 47 51 15.8 | 122 9 12.2 | 0.122 | Gateway Middle School | K2 | I | | EYES | % | 45 19 46.5 | 123 3 23.5 | 0.061 | Ewing Young Elementary | CMG5T | I | | FINN | % | 47 43 10.2 | 122 13 55.9 | 0.121 | Finn Hill Junior High | K2 | Ī | | GNW | % | 47 33 51.8 | 122 49 31.0 | 0.165 | Green Mountain (CREST) | EPI,BB3 | L-PPP | | HAO | # | 45 30 33.1 | 122 39 24.0 | 0.018 | Harrison | FBA23 | D | | HEBO | % | 45 12 49.2 | 123 45 15.0 | 0.875 | Mt. Hebo (CREST) | EPI,BB | M,E | | HICC | % | 47 23 24.4 | 122 17 52.4 | 0.115 | Highline Community College | K2 | I | | HOLY | % | 47 33 55.4 | 122 23 1.0 | 0.106 | Holy Rosary School | K2 | Ï | | HOOD | % | 45 19 17.8 | 121 39 7.8 | 1.52 | Hood Meadows (CREST) | EPI,BB | L-PPP,I | | HUBA | % | 45 37 51.0 | 122 39 4.9 | 0.023 | Hudson's Bay High School | CMG5T | I | | KDK | % | 47 35 42.7 | 122 19 56.0 | 0.004 | King Dome | K2 | Ī | | KFAL | % | 42 15 27.7 | 121 47 6.5 | 1.326 | Klamath Falls | CMG5T | Serial | | KEEL | % | 45 33 0.8 | 122 53 42.4 | 0.067 | Keeler | A20 | D,E,M | | KICC | % | 47 34 37.9 | 122 37 52.4 | 0.017 | Kitsap County Central Comm. | K2 | I I | | KIMB | % | 47 34 29.3 | 122 18 10.1 | 0.069 | Kimball Elementary | K2 | Ī | | KIMR | % | 47 30 11.0 | 122 46 2.0 | 0.123 | Mod. Risk Waste Coll. Fac. | K2 | Î | | KINR | % | 47 45 6.0 | 122 38 35.0 | 0.008 | North Road Shed | K2 | Î | | KITP | % | 47 40 30.0 | 122 37 47.0 | 0.076 | Wastewater Treatment Plant | K2 | Ī | | KNJH | % | 47 23 5.0 | 122 13 42.0 | 0.014 | Kent Junior High | K2<br>K2 | Ī | | LANE | % | 44 3 6.5 | 123 13 54.8 | 0.014 | Lane | K2<br>K2 | E,M | | LAWT | % | 47 39 23.4 | 122 23 21.9 | 0.12 | Lawton Elementary | SLN-320 | I.,W | | | /0<br>% | 47 46 4.4 | 122 6 56.2 | 0.03 | | | I | | LEOT | | 46 45 0.0 | 121 48 36.0 | 0.113 | Leota Junior High<br>Longmire Springs (CREST) | K2 | | | LON | %<br>0/ | | | | | EPI,BB3 | L-PPP | | LTY | % | 47 15 21.2 | 120 39 53.4 | 0.97 | Liberty Heights Mine (CREST) | EPI,BB3 | I | | MARY | % | 47 39 45.7 | 122 7 11.6 | 0.011 | Marymoor Park | K2 | I | | MBKE | % | 48 55 2.0 | 122 8 29.0 | 1.01 | Kendall Elementary | K2 | I | **TABLE 1C - Strong-motion three-component stations** | STA | F | | LONG | EL EL | NAME | SENSOR | TEL | |-------------|----------|--------------------------------|----------------------------------|---------------|-------------------------------------|-------------|---------| | <u> </u> | <u> </u> | (dag min san) | | <del></del> | NAME | SENSUR | TEL. | | MBPA | % | (deg. min. sec.)<br>47 53 54.7 | (deg. min. sec.)<br>121 53 20.2 | (km)<br>0.186 | Monroe | A20 | DMI | | MEAN | % | 47 37 21.7 | 121 33 20.2 | 0.180 | Meany Middle School | K20<br>K2 | D,M,L | | MEGW | 70<br>% | 46 15 57.4 | 123 52 38.2 | 0.037 | Megler (CREST) | EPI,BB | I | | MPL | % | 47 28 7.0 | 122 11 4.5 | 0.332 | Maple Valley | | M,E | | | % | 44 48 1.4 | 122 41 53.8 | 0.122 | Marion | A | D,M,L | | MRIN | % | | | 0.187 | | K2 | M,E | | MURR | % | 47 7 12.0 | 122 33 36.0 | 0.032 | Camp Murray Inglemoore High School | K2 | None | | NIHS | % | 47 44 29.2 | 122 13 17.1 | 0.137 | NOAA Sand Point | K2 | I | | NOWS | 70 | 47 41 12.0 | 122 15 21.2 | 0.002 | | A20 | Ι | | OFR | % | 47 56 0.0 | 124 23 41.0 | 0.152 | Olympic Nat. Rsrcs. Ctr. (CREST) | EPI,BB | I,E | | OHC | % | 47 20 2.0 | 123 9 29.0 | 0.006 | Hood Canal Junior High | K2 | I | | OPC | % | 48 6 1.0 | 123 24 41.8 | 0.09 | Peninsula College (CREST) | EPI,BB | I | | PAYL | % | 47 11 34.0 | 122 18 46.0 | 0.009 | Aylen Junior High | K2 | I | | PCEP | % | 47 641.8 | 122 17 24.0 | 0.16 | Puyallup East Sheriff Precinct | K2 | I | | PCFR | % | 46 59 23.3 | 122 26 27.4 | 0.137 | Roy Training Center | K2 | I | | <b>PCMD</b> | % | 46 53 20.9 | 122 18 0.9 | 0.239 | Mountain Detachment | K2 | I | | PERL | % | 45 19 42.0 | 122 46 40.2 | 0.068 | Pearl | K2 | M,E | | PIN | % | 43 48 40.0 | 120 52 19.0 | 1.865 | Pine Mtn. (CREST) | EPI,BB3 | E,L-PPP | | <b>PNLK</b> | % | 47 34 54.5 | 122 2 1.0 | 0.128 | Pine Lake Middle School | K2 | ľ | | QAW | % | 47 37 54.3 | 122 21 15.5 | 0.14 | Queen Anne | A20 | L | | RAW | % | 47 20 14.0 | 121 55 53.2 | 0.208 | Raver | A20 | M,L | | RBEN | % | 47 26 6.7 | 122 11 10.0 | 0.152 | Benson Hill Elementary | K2 | I | | RBO | # | 45 32 27.0 | 122 33 51.5 | 0.158 | Rocky Butte | FBA23 | D . | | RHAZ | % | 47 32 24.7 | 122 11 1.3 | 0.108 | Hazelwood Elementary | A20 | I | | ROSS | % | 45 39 43.0 | 122 39 25.0 | 0.061 | Ross | A20 | E | | RRHS | % | 46 47 58.6 | 123 2 25.4 | 0.047 | Rochester High School | K2 | I · | | RWW | % | 46 57 53.7 | 123 32 31.7 | 0.015 | Ranney Well (CREST) | EPI,BB3 | L-PPP | | SBES | % | 48 46 5.9 | 122 24 54.2 | 0.119 | Silver Beach Elem. School | K2 | I | | SCC | % | 47 44 59.4 | 122 21 35.3 | 0 | Shoreline Community College | CMG5T | I | | SEA | % | 47 39 15.8 | 122 18 29.3 | 0.03 | University of Washington | A20,PMD2023 | L | | SFER | % | 47 37 10.4 | 117 21 55.7 | 0.715 | Ferris High School | K2 | I | | SGAR | % | 47 40 37.8 | 117 24 50.3 | 0.579 | Garfield Elementary | K2 | I | | SHIP | % | 47 39 19.0 | 122 19 14.4 | 0.005 | WashDOT Lake Union Shop | CMG5T | I,R | | SHLY | \$ | 47 42 30.4 | 117 24 57.7 | 0.626 | Spokane Temp | K2 | None | | <b>SMNR</b> | % | 47 12 16.6 | 122 13 53.4 | 0.022 | Sumner High School | K2 | I | | SNIO | \$ | 47 40 46.0 | 117 24 18.0 | 0.584 | Spokane NIOSH | K2 | None | | SOPS | \$ | 47 43 40.8 | 117 18 46.5 | 0.707 | Orchard Prairie Elementary | K2 | 1 | | SP2 | % | 47 33 23.3 | 122 14 52.8 | 0.03 | Seward Park | A,BB | L | | SQM | % | 48 4 39.0 | 123 2 44.0 | 0.03 | Sequim Battelle Prop. (CREST) | EPI,BB | I,R | | SVOH | % | 48 17 21.8 | 122 37 54.8 | 0.022 | Skagit Valley College Oak<br>Harbor | K2 | I | | SVTR | % | 47 29 45.4 | 121 46 49.3 | 0.146 | Two Rivers School | CMG5T | I | | SWES | % | 47 42 51.0 | 117 27 53.2 | 0.623 | Westview Elementary | K2 | Ī | | SWID | % | 48 0 31.0 | 122 24 42.0 | 0.062 | South Whidbey Primary School | K2 | Ī | | TAKO | % | 43 44 36.6 | 124 4 52.5 | 0.046 | Tahkenitch (CREST) | EPI,BB | M,E | | TBPA | % | 47 15 29.0 | 122 22 1.0 | 0.002 | Tacoma | A20 | M,L,D | | TKCO | % | 47 32 12.7 | 122 18 1.5 | 0.002 | King County Airport | A20 | I | | TOLO | % | 44 37 19.3 | 123 55 16.6 | 0.021 | Toledo (CREST) | EPI,BB | M,E | | TTW | % | 47 41 40.7 | 121 41 20.0 | 0.542 | Tolt Reservoir (CREST) | EPI,BB3 | I | | UPS | % | 47 15 50.2 | 122 29 1.1 | 0.113 | University of Puget Sound | K2 | I | | UWFH | % | 48 32 46.0 | 123 0 43.0 | 0.01 | Friday Harbor Laboratories | K2<br>K2 | I | | VVHS | % | 47 25 25.1 | 122 27 13.1 | 0.095 | Vashon High School | K2<br>K2 | I | | * * *** | , 0 | y a district district to the | m merchant dans 2 . A. serb a A. | 0.075 | · month tright politon | A Notice | A. | **TABLE 1C - Strong-motion three-component stations** | STA | F | LAT | LONG | EL | NAME | SENSOR | TEL. | |------|---|------------------|------------------|-------|---------------------------------|--------|------| | | | (deg. min. sec.) | (deg. min. sec.) | (km) | | | | | WISC | % | 47 36 32.0 | 122 10 27.8 | 0.056 | Wilburton Instr. Services Cntr. | K2 | I | | WWHS | % | 46 2 43.5 | 118 19 2.0 | 0.01 | Walla Walla High School | CMG5T | I | ## Data Processing The PNSN seismic recording system uses real-time telemetry, and records earthquakes using an 'event trigger'. Analog and strong-motion digital data are recorded at 100 samples per sec., while broad-band digital data are usually digitized at 50 samples per sec. Arrival times, first motion polarities, signal durations, signal amplitudes, locations and focal mechanisms (when possible) are determined in post-processing. Digital data are processed for all locatable teleseisms, regional events, and local events. Each trace data file has an associated 'pickfile' which includes arrival times, polarities, coda lengths, and other data. EARTHWORM is our main PNSN data-acquisition system. Analog stations, and most digital stations, are continuously telemetered in real time. Three USGS strong-motion stations in Portland record only on-site. Their data are retrieved via dial-up modem, if needed. All of the real-time data are continuously recorded into temporary disk storage areas called "wave tanks" which can accommodate about 24 hours of continuous data for the entire network. Triggering algorithms create individual event files. Continuous seismic data are archived for about 60 stations, many on volcanoes. We continue to use the UW2 pickfile and data formats, and analysis tools that have been in place for more than a decade. Unedited network-trigger trace data are stored on ongoing "network-archive" backup tapes. Edited "Master Event" trace data files are kept for all seismic events. These "Master Event" files are also translated to IRIS-SEED format and submitted to the IRIS Data Management Center for archive and distribution. Through EARTHWORM, we exchange real-time data with the University of Oregon, The Battelle Pacific Northwest National Labs, the Pacific Geoscience Centre, the Montana Bureau of Mines, and CALNET. In addition, we send real-time data to the Alaska Tsunami Warning Center, the Pacific Tsunami Warning Center, the Cascade Volcano Observatory, and the National Earthquake Information Center. The entire PNSN catalog has been contributed to the ANSS composite catalog located at the Northern California Earthquake Data Center. The PNSN section of the ANSS catalog is updated daily. Starting in the fall of 2001, we started shipping a large portion of our waveform data to the IRIS DMC in near real time. This was done by running the ew2seed program at IRIS, which connects to our EARTHWORM waveservers and extracts ½ hour of data at a time. Several months of testing proved successful. In the spring of 2003, we started sending all PNSN traces from all wave servers so that IRIS has a complete copy of all our continuous data in the BUD (Buffer of Uniform Data) system. ## **Publications** Publications wholly or partly supported under this operating agreement are listed in Appendix 1. ## SEISMICITY, EMERGENCY NOTIFICATION, AND OUTREACH ## Seismicity Figure 2 shows earthquakes of magnitude 2.0 or larger located in Washington and Oregon during this reporting period. Table 2 lists earthquakes recorded by the PNSN during 2003 which were reported felt. Table 3 gives information on seismic activity recorded at the PNSN annually since 1980. During this reporting period there were 39 earthquakes reported felt west of the Cascades in Washington or Oregon, ranging in magnitude from 1.6 to 4.8. East of the Cascades in Washington or Oregon, 8 earthquakes were felt during 2003. These ranged from magnitude 0.9 to 3.4. Figure 2. Seismicity 2003 Located earthquakes, magnitude >= 2.0. Grey squares indicate earthquakes with depth greater than 30km. Unfilled circles indicate earthquakes with depth <= 30km. Black diamonds indicate cities. Area covered is 117W-125.25W, 42N-49N TABLE 2 - Felt Earthquakes during 2003 | DATE-(UTC)-TIME | LAT<br>(N) | LON<br>(W) | DEP | M | COMMENTS | СИМ | Shake<br>Map | |---------------------|------------|------------|------|-----|----------------------------------|----------|--------------| | mm/dd/yyyy hh:mm | deg. | deg. | km | | | | | | 1/09/2003 17:55:12 | 47.62 | 121.97 | 8.8 | 2.1 | 5.3 km SW of Carnation, WA | _ | - | | 1/13/2003 09:58:01 | 47.78 | 120.13 | 4.6 | 2.6 | 11.1 km SW of Chelan, WA | - | - | | 1/14/2003 00:06:06 | 48.48 | 123.12 | 20.9 | 2.7 | 10.9 km SW of Friday Harbor, WA | _ | - | | 1/14/2003 20:52:51 | 47.59 | 121.91 | 2.3 | 2.5 | 3.0 km NNW of Fall City, WA | - | ~ | | 1/15/2003 03:41:58 | 46.62 | 120.53 | 11.0 | 3.2 | 2.7 km NNW of Yakima, WA | - | - | | 1/17/2003 01:18:27 | 48.63 | 123.01 | 13.5 | 2.4 | 10.2 km N of Friday Harbor, WA | - | - | | 1/17/2003 01:42:38 | 48.61 | 123.09 | 8.2 | 2.4 | 10.2 km NW of Friday Harbor, WA | - | - | | 1/31/2003 22:47:28 | 47.74 | 121.84 | 0.0 | 2.5 | 11.0 km E of Duvall, WA | <u> </u> | _ | | 2/07/2003 09:16:51 | 48.49 | 123.60 | 23.0 | 2.2 | 19.9 km WNW of Victoria, BC | <u> </u> | _ | | 2/08/2003 18:39:10 | 47.52 | 121.90 | 5.8 | 2.8 | 5.3 km S of Fall City, WA | | _ | | 2/19/2003 13:54:13 | 46.55 | 121.77 | 1.4 | 2.4 | 24.9 km W of Goat Rocks, WA | - | - | | 3/09/2003 03:29:53 | 47.64 | 122.16 | 22.0 | 2.4 | 4.3 km NE of Bellevue, WA | - | - | | 3/18/2003 11:42:28 | 47.60 | 122.60 | 27.2 | 2.5 | 3.8 km NNE of Bremerton, WA | - | - | | 3/20/2003 16:07:47 | 48.73 | 119.51 | 0.0 | 2.7 | 41.0 km N of Okanogan, WA | - | + | | 3/21/2003 11:23:12 | 49.23 | 123.59 | 6.9 | 2.2 | 40.2 km WNW of Vancouver, BC | - | _ | | 3/24/2003 13:16:49 | 49.23 | 123.58 | 23.6 | 2.7 | 39.9 km WNW of Vancouver, BC | - | <del>-</del> | | 3/24/2003 13:43:37 | 49.25 | 123.62 | 15.3 | 2.9 | 43.5 km WNW of Vancouver, BC | - | - | | 3/31/2003 21:20:22 | 45.64 | 122.76 | 16.9 | 2.6 | 15.5 km NW of Portland, OR | _ | - | | 4/15/2003 09:42:44 | 47.71 | 122.61 | 23.8 | 2.1 | 4.0 km SE of Poulsbo, WA | - | + | | 4/17/2003 01:38:03 | 47.69 | 122.10 | 13.7 | 2.7 | 8.3 km E of Kirkland, Wa | | | | 4/24/2003 19:26:30 | 45.63 | 122.74 | 17.2 | 3.9 | 14.3 km NW of Portland, OR | | <u> </u> | | 4/25/2003 10:02:13 | 47.67 | 123.25 | 51.3 | 4.8 | 37.3 km ESE of Mt Olympus, WA | | ~ | | 4/25/2003 21:55:31 | 45.64 | 122.75 | 16.8 | 2.2 | 14.9 km NW of Portland, OR | - | _ | | 4/28/2003 22:25:48 | 45.12 | 122.43 | 15.1 | 2.8 | 26.3 km SE of Canby, OR | - | - | | 5/30/2003 03:49:68 | 47.49 | 122.73 | 25.0 | 3.7 | 11.4 km SW of Bremerton, WA | | ~ | | 6/20/2003 02:01:23 | 47.65 | 121.99 | 19.6 | 3.5 | 5.4 km W of Carnation, WA | - | ~ | | 6/20/2003 15:29:57 | 47.62 | 122.17 | 32.1 | 2.5 | 2.6 km ENE of Bellevue, WA | - | - | | 6/26/2003 12:44:57 | 45.75 | 122.32 | 7.6 | 2.2 | 33.6 km NE of Portland, OR | _ | ~ | | 6/28/2003 06:15:50 | 47.93 | 121.84 | 15.7 | 2.4 | 12.9 km NE of Monroe, WA | - | - | | 7/06/2003 05:55:11 | 47.42 | 122.78 | 8.1 | 3.0 | 19.5 km SW of Bremerton, WA | - | | | 7/08/2003 13:27:38 | 47.66 | 120.28 | 0.0 | 1.9 | 4.1 km W of Entiat, WA | _ | - | | 7/25/2003 20:48:01 | 45.64 | 122.74 | 17.4 | 3.0 | 14.8 km NW of Portland, OR | - | - | | 7/26/2003 05:26:34 | 45.64 | 122.74 | 16.8 | 2.2 | 14.8 km NW of Portland, OR | - | - | | 7/26/2003 11:24:45 | 45.64 | 122.73 | 16.9 | 2.8 | 14.5 km NW of Portland, OR | ~ | _ | | 7/27/2003 10:31:29 | 45.63 | 122.74 | 18.3 | 2.4 | 14.2 km NW of Portland, OR | _ | _ | | 7/29/2003 06:21:40 | 46.00 | 122.71 | 19.8 | 2.1 | 23.5 km SE of Longview, WA | - 1 | ** | | 8/22/2003 19:08:38 | 47.66 | 117.44 | 0.5 | 0.9 | 2.2 km WSW of Spokane, WA | - | - | | 9/01/2003 08:54:63 | 47.95 | 121.75 | 11.6 | 2.3 | 19.6 km ENE of Monroe, WA | - | ~ | | 9/01/2003 18:37:53 | 47.67 | 120.27 | 4.9 | 2.1 | 3.7 km WNW of Entiat, WA | - | | | 9/21/2003 06:12:41 | 47.61 | 121.83 | 17.4 | 2.0 | 6.5 km NE of Fall City, WA | | ~ | | 9/22/2003 14:06:20 | 47.94 | 116.99 | 0.7 | 3.3 | 43.0 km NE of Spokane, WA | | - | | 10/01/2003 13:28:** | 44.73 | 117.49 | 22.1 | 3.1 | 27.7 km E of Baker, OR | <b>-</b> | | | 10/13/2003 01:11:58 | 47.58 | 121.87 | 7.7 | 1.6 | 2.2 km NE of Fall City, WA | - | | | 10/25/2003 23:35:22 | 47.53 | 121.89 | 18.6 | 2.3 | 3.7 km S of Fall City, WA | | | | 11/13/2003 00:57:54 | 42.52 | 122.58 | 16.8 | 2.9 | 23.2 km WNW of Mt McLoughlin, OR | | | | DATE-(UTC)-TIME | LAT<br>(N) | LON<br>(W) | DEP | M | COMMENTS | СИМ | Shake<br>Map | |---------------------|------------|------------|-----|-----|-------------------------------|-----|--------------| | mm/dd/yyyy hh:mm | deg. | deg. | km | | | | | | 12/14/2003 04:59:48 | 46.59 | 121.70 | 4.9 | 1.8 | 20.5 km WNW of Goat Rocks, WA | - | | | 12/26/2003 10:07:46 | 48.75 | 119.63 | 0.4 | 3.4 | 43.1 km N of Okanogan, WA | ~ | _ | | Year | Total # | Out of Net | | Inside Net | | | | | | | | |------|---------|------------|-----------|------------|-----------|--------|--|--|--|--|--| | | · | | Unlocated | | Located | | | | | | | | | | | | Total | EQs(felt) | Blasts | | | | | | | 80 | 4576 | 253 | 1075 | 3246 | 2874(18) | 372 | | | | | | | 81 | 5155 | 291 | 1474 | 3385 | 2672(29) | 713 | | | | | | | 1982 | 4452 | 329 | 1824 | 2297 | 1948(20) | 349 | | | | | | | 1983 | 4489 | 405 | 2338 | 1745 | 1356(15) | 389 | | | | | | | 1984 | 3144 | 267 | 1095 | 1780 | 1409(16) | 371 | | | | | | | 1985 | 3560 | 266 | 1168 | 2122 | 1890(16) | 232 | | | | | | | 1986 | 2554 | 318 | 452 | 1776 | 1594(21) | 182 | | | | | | | 1987 | 1981 | 537 | 127 | 1304 | 966(22) | 338 | | | | | | | 1988 | 2249 | 507 | 114 | 1624 | 1263(19) | 361 | | | | | | | 1989 | 2781 | 501 | 137 | 2136 | 1835(38) | 301 | | | | | | | 1990 | 3433 | 717 | 204 | 2505 | 2096(26) | 409 | | | | | | | 1991 | 3083 | 675 | 315 | 2085 | 1687(26) | 398 | | | | | | | 1992 | 3522 | 891 | 235 | 2381 | 1993(22) | 388 | | | | | | | 1993 | 5594 | 731 | 626 | 4224 | 3877(35) | 347 | | | | | | | 1994 | 6243 | 900 | 1518 | 3816 | 3424(28) | 392 | | | | | | | 1995 | 5354 | 959 | 1462 | 2915 | 2539(16) | 376 | | | | | | | 1996 | 4741 | 911 | 1192 | 2628 | 2214(39) | 414 | | | | | | | 1997 | 3881 | 728 | 904 | 2239 | 1992(35) | 247 | | | | | | | 1998 | 7463 | 831 | 2174 | 4430 | 4176(11) | 254 | | | | | | | 1999 | 4505 | 803 | 1483 | 2187 | 1965(30) | 222 | | | | | | | 2000 | 5625 | 1121 | 1686 | 2818 | 2482(18) | 341 | | | | | | | 2001 | 5945 | 1090 | 2106 | 2730 | 2258(95) | 472 | | | | | | | 2002 | 5495 | 951 | 1751 | 2752 | 2299(39) | 453 | | | | | | | 2003 | 4863 | 884 | 1524 | 2413 | 1978(47) | 435 | | | | | | ## Public Information and Outreach Summary lists for all earthquakes located by the PNSN since 1969 are available via anonymous ftp on ftp.ess.washington.edu/pub/seis\_net. This information is also available through the PNSN website http://www.pnsn.org and selected events are included in the USGS ANSS catalog search: http://quake.geo.berkeley.edu/anss/catalog-search.html. The PNSN website offers information about recent earthquake activity, network operations, and earthquake hazards in the Pacific Northwest as well as links into other sources of earthquake information. The PNSN has an educational outreach program to better inform the public, policy makers, and emergency managers. Outreach includes information sheets, lab tours, lectures, workshops, and media interviews, and an audio library with several tapes. Highlights of this reporting period include outreach talks to numerous groups of all types, including state and county officials, representatives of utility and private companies, and engineering and emergency management groups, and 72 Seismology Lab tours and lectures for visiting class groups, serving $\sim$ 1,500 students; primarily from grades 3-12. The PNSN hosted several ANSS and CREW committee or subcommittee meetings. PNSN representatives participated in national level ANSS committees and activities throughout the year, and attended a wide variety of other meetings related to earthquake hazards, preparedness, and related information and outreach. ## **ACKNOWLEDGMENTS** Seismic stations, telemetry links, and data acquisition equipment were maintained by Jim Ramey and Allen Strelow at the UW, Patrick McChesney (stationed at CVO in Vancouver, Washington), Pat Ryan (of the University of Oregon in Eugene, Oregon), and Don Hartshorn (of Pacific Northwest National Labs in Richland, WA). Bill Steele provided information to the public, while Amy Wright handled routine data analysis and archiving of digital trace data in UW2 format. George Thomas, Amy Lindemuth, Robert Lesley and Lynn Hultgrien worked on strong motion instrumentation and software. Ruth Ludwin wrote reports and maintained the PNSN web-pages. The University of Oregon (UO) installed and maintained stations and telemetry links in central Oregon, and operated an earthworm node to transmit data to the University of Washington. ## APPENDIX 1 - Publications wholly or partially funded under this agreement. #### Publications Quarterly bulletins from the PNSN (http://www.ess.washington.edu/SEIS/PNSN/REPTS/quarterly.html) provide operational details and descriptions of seismic activity in Washington and Oregon. These are available from 1984 through the third quarter of 2003. Final published catalogs are available from 1970, when the network began operation, though 1989. ## • Reports and Articles using data from the PNSN or related to PNSN activities - Bakun, W.H., R.A. Haugerud, M.G. Hopper, and R.S. Ludwin, 2002, The December 1872 Washington State Earthquake, Bulletin of the Seismological Society of America, Vol. 92, No. 8, pp. 3239-3252 - Brocher, T.M, C.S. Weaver, R.S. Ludwin, 2003, Assessing hypocentral accuracy and lower magnitude completeness in the Pacific Northwest using seismic refraction detonations and cumulative frequency-magnitude relationships, Seis. Res. Lett., V. 74, No. 6, pp. 772-788. - Caruso, F., S. Viciguerra, V. Latora, A. Rapisara, S. Malone, (in preparation), Multifractal analysis of Mount St. Helens seismicity as a quantitative characterization of the eruptive activity - Jones, J., S.D. Malone, (submitted), Mount Hood earthquake activity: volcanic or tectonic origin?, Bull. Seis. Soc. Amer. - Musumeci, C., S. Gresta, S.D. Malone, 2002, Magma System Recharge of Mount St. Helens from precise relative hypocenter location of microearthquakes, Jour Geophys. Res. DOI:10.1029/2001JB000629. - Oppenheimer, D., A. Bittenbinder, B. Bogaert, R. Buland, L. Dietz, R. Hanson, S. Malone, C. McCreery, T. Sokolowski, C. Weaver, 2002, The Crest Project: Consolidated reporting of earthquakes and tsunami, ITS 2001 Proceedings, NTHMP Review Session, Paper R5, 2002 - Preston, L.A., K.C. Creager, R.S. Crosson, T.M. Brocher, and A. Trehu, 2003, Intraslab earthquakes: Dehydration of the Cascadia Slab, Science, V. 302, pp. 1197-2000. - Ranf, R.T., M.O. Eberhard, S. Malone, (in press), Post-Earthquake Prioritization of Bridge Inspections, Earthquake Spectra, EERI - Tusa, G, S.D. Malone, E. Giampiccolo, Stefano Gresta, Carla Musumeci (in press) Microearthquake source parameters and seismic attenuation at Mount St. Helens. Bull. Seis. Soc. Amer. - Van Wagoner, T., R.S. Crosson, K.C. Creager, G. Medema, L. Preston, N.P. Symons, and T.M. Brocher, 2002, Crustal Structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography, J. Geophys. Res., 107 (B12), 2381, doi:10.1029/2001JB000710, 2002. - Vinciguerra, S., D. Elsworth, S. Malone, (in preparation), The 1980 pressure response and dome failure of Mount St. Helens (USA) inferred by seismic scaling exponents. #### Abstracts - Barberopoulou, A., A. Qamar, T.L. Pratt, K. Creager, W. Steele, 2003, Local amplification of seismic waves from the Mw7.9 Alaska earthquake and damaging water waves in Lake Union, Seattle, Washington, Geoscience Horizons Seattle 2003, Abstracts with Programs, Geol. Soc. Am. Annual Meeting November 2-5 2003, Paper# 263-9, p. 646. - Caruso, F.; Vinciguerra, S.; Latora, V.; Rapisarda, A.; Malone, S., 2003, Multifractal analysis of Mt. St. Helens, seismicity as an indicator for eruptive activity, EGS-AGU-EUG Joint Assembly, NP11-1TH4P-1412. - Crider, J.G. R.S. Crosson, and J. Brooks, The Chelan seismic zone, the great terrace and the December 1872 Washington state earthquake, Geoscience Horizons Seattle 2003, Abstracts with Programs, Geol. Soc. Am. Annual Meeting November 2-5 2003, Paper# 263-3, p. 645. - Crosson, R.S., 2003, Geophysical constraints on the deep structure of the Washington Cascades, and tectonic implications, Geoscience Horizons Seattle 2003, Abstracts with Programs, Geol. Soc. Am. Annual Meeting November 2-5 2003, Paper# 126-1, p. 305. - Crosson, R.S. and R.J. Stewart, 2003, Implications of high resolution seismic tomography for the structure and evolution of the Puget basins, Geoscience Horizons Seattle 2003, Abstracts with Programs, Geol. Soc. Am. Annual Meeting November 2-5 2003, Paper# 127-11, p. 309. - Hill, D.P., S. Prejean, D. Oppenheimer, S.D. Malone, K, Richards-Dinger, 2002, Activity remotely triggered in volcanic and geothermal centers in California and Washington by the 3 November 2002 Mw=7.9 Alaska earthquake Eos Trans. AGU, 83(47),S72F-1357. - Jones, J.P., S. Malone, 2002, Mount Hood Earthquake Activity: Volcanic or Tectonic Origins?, Eos Trans. AGU, 83(47), S12A-1179. - Johnson, J.B., R.C. Aster, M.C. Ruiz, S.D. Malone, P.J. McChesney, J.M. Lees, P.R. Kyle, 2003, Interpretation and utility pf infrasonic records from erupting volcanoes, Jour. Volcan. Geother. Res. V. 121 p. 15-63. - Malone, S. and A. Haulter, 2003, How glacier-quakes can mimic low-frequency volcanic earthquake seismograms, EGS-AGU-EUG Joint Assembly, VGP14-1TU2P-0255. - Malone, S.D., 2003, A review of regional seismic network recording and data exchange systems, Seis. Res. Lett., V74, 2, p. 228. - McCausland, W.A., S. Malone, 2003, Deep tremor along the Cascadia subduction zone, Geoscience Horizons Seattle 2003, Abstracts with Programs, Geol. Soc. Am. Annual Meeting November 2-5 2003, Paper# 127-2 2003, p. 308. - Moran, Seth C., S.D. Malone, J.M. Lees, 2003, Mid-crustal velocity anomalies in the central Washington cascades: evidence for structures affecting regional tectonics and volcanism?, Geoscience Horizons Seattle 2003, Abstracts with Programs, Geol. Soc. Am. Annual Meeting November 2-5 2003, Paper# 262-8, p. 644 - Preston, L., K. Creager, R. Crosson, Intraslab earthquakes in Cascadia caused by dehydration embrittlement, Geoscience Horizons Seattle 2003, Abstracts with Programs, Geol. Soc. Am. Annual Meeting November 2-5 2003, Paper #127-5, p. 308. - Qamar, A., A. Wright, G. Thomas, 2003, Do Richter magnitudes reveal seismic site response?, Geoscience Horizons Seattle 2003, Abstracts with Programs, Geol. Soc. Am. Annual Meeting November 2-5 2003, Paper #263-9, p. 646 - Simpson, D.W., S. Malone, W. Prescott, 2003, Earthscope facilities for investigations of Cascadia seismicity, Geoscience Horizons Seattle 2003, Abstracts with Programs, Geol. Soc. Am. Annual Meeting November 2-5 2003, Paper# 127-14 2003 (abs) p. 310.